• Title/Summary/Keyword: Birnessite

Search Result 55, Processing Time 0.026 seconds

A Study on the Oxidative Transformation of Quinone Compound using Nanostructured Black-birnessite (나노구조의 블랙-버네사이트를 이용한 퀴논계 화합물의 산화-변환 연구)

  • Harn, Yoon-I;Choi, Chan-Kyu;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.547-554
    • /
    • 2010
  • In this study, new manganese oxide (i.e., black-birnessite) particles with nanostructures were prepared and its physico-chemical properties and oxidative-transformation efficiency on 1,4-naphthoquinine(1,4-NPQ) in the presence of reactive mediator was investigated. The results were also compared with that of the manganese oxide (i.e., brown-birnessite) particles synthesized by classical McKenzie method. Analysis of XRD and SEM data show that the particles are a single phase corresponding to a birnessite-based manganese oxide with cotton ball-like shapes containing nanofibers. In batch experiments, removals of 1,4-NPQ by the black-birnessite follows pseudo-first-order kinetics and the rate constant values obtained are greater about 2.3 times than that of the brown-birnessite in spite of its lower surface area (41.0 vs 19.80 $m^2/g$). The results can be explained by the higher crystallinity and nano structured features of the back-birnessite particles, which give higher reactivity for the removals of the quinone compound. HPLC analysis of the reaction products confirmed that the balck-birnessites removed 1,4-NPQ through cross-coupling reaction in the presence of catechol as a reactive mediator.

Effects of Temperature on A Synthesized Birnessite (온도 변화에 따른 합성 버네사이트 특성 변화 연구)

  • Park, Soo Oh;Kim, Young Jae;Lee, Young Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • A series of birnessite was synthesized at 25, 40, 60, and $80^{\circ}C$, respectively. Intensities of XRD and the ratio of signal to noise of the peaks for samples increases with increasing temperature up to $60^{\circ}C$, whereas the intensity and ratio for a sample synthesized at $80^{\circ}C$ decrease, showing that crystallinity of the birnessite synthesized at $60^{\circ}C$ is better than that of the synthesized at $80^{\circ}C$. However, BET surface areas for these two samples show that the surface area increases 39.4 to 89.7 $m^2/g$ with increasing synthesizing temperature from 60 up to $80^{\circ}C$, indicating that a small surface area is shown in a well-crystallized birnessite rather than that of a poorly crystallized birnessite. SEM images show that morphologies for samples are seriously influenced by temperature. The morphology of the synthesized at 25 shows a round-shape, while a plate-like morphology is shown in the synthesized birnessite at $80^{\circ}C$. In addition, a porous layered structure is also shown in the synthesized birnessite at $80^{\circ}C$. These results suggest that physicochemical properties of the synthesized birnessite are sensitively affected by mechanical changes of parameters such as temperature during the synthesization.

Oxidative Transformation of Tetracycline in Aqueous Solution by Birnessite (망간산화물(birnessite)에 의한 수용액 중 Tetracycline의 산화-변환반응에 대한 연구)

  • Eom, Won-Suk;Kim, So-Hui;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • An investigation on the removals of tetracycline (TTC), which is a family of antibiotics widely founded in the environment, from the aqueous solution by birnessite(${\delta}-MnO_2$)-mediated oxidative transformation was described. This study also examined the potential effect of the naturally occurring substances, humic acid (HA) on the oxidative transformation. The experiment was carried out in various conditions (reaction time, Mn oxide loadings, pH) and in the presence of HA as a batch test. The removals of TTC followed pseudo-first order reactions, and rate constants (k, $hr^{-1}$) for the removals of TTC were constantly increased with decreasing pH from 0.98 (pH 9) to 2.97 (pH 3). The rate constants also increased about 1.3 times when the birnessite loading increased from 1 to 2 g/L. Presence of HA (5 mg-C/L, at $pH{\geq}6$) caused some enhancement in the removals of TTC as compared to the control, and also showed the removal efficiencies of TTC in the birnessite mediated systems (TTC=0.25 mM, ${\delta}-MnO_2=2.0g/L$, pH 6) increased with increasing HA concentrations (1~10 mg-C/L). The results obtained from the oxidative transformation of TTC and the effect of HA were discussed in terms of reaction characteristics and mechanism.

Oxidative Transformation of 1-Naphthol Using Manganese Oxide (망간산화물을 이용한 1-Naphthol의 산화 제거 연구)

  • Lim, Dong-Min;Kang, Ki-Hoon;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, removals of 1-naphthol by oxidative-coupling reaction using birnessite, one of natural Mn oxides present in soil, was investigated in various experimental conditions(reaction time, Mn oxide loadings, pH, etc). Removal efficiency of 1-naphthol by birnessite was high in all the experimental conditions, and UV-vis. and mass spectrometric analyses on the supernatant after reaction confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Pseudo-first order rate constants, f, for the oxidative transformation of 1-naphthol by birnessite was derived from the kinetic experiments under various amount of birnessite loadings, and using the observed pseudo-first order rate constants with respect to birnessite loadings, surface area-normalized specific rate constant, $k_{surf}$ was also determined to be $9.31{\times}10^{-4}(L/m^2{\cdot}min)$ for 1-naphthol. In addition, the oxidative transformation of 1-naphthol was found to be dependent on solution pH, and the pseudo-first order rate constants were increased from 0.129 at pH 10 to 0.187 at pH 4.

Kinetics of Chromium(III) Oxidation by Various Manganess Oxides (망간 산화물에 의한 3가 크롬의 산화)

  • Chung, Jong-Bae;Zasoski, Robert J.;Lim, Sun-Uk
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.414-420
    • /
    • 1994
  • Birnessite, pyrolusite and hausmannite were synthesized and tested for the ability to oxidize Cr(III) to Cr(VI). These oxides differed in zero point of charge, surface area, and crystallinity. The kinetic study showed that Cr(III) oxidation on the Mn-oxide surface is a first-order reaction. The reaction rate was various for different oxide at different conditions. Generally the reaction by hausmannite, containing Mn(III), was faster than the others, and oxidation by pyrolusite was much slower. Solution pH and initial Cr(III) concentration had a significant effect on the reaction. Inhibited oxidation at higher pH and initial Cr(III) concentration could be due to the chance of Cr(III) precipitation or complexing on the oxide surface. Oxidations by birnessite and hausmannite were faster at lower pH, but pyrolusite exhibited increased oxidation capacity at higher pH in the range between 3.0 and 5.0. Reactions were also temperature sensitive. Although calculated activation energies for the oxidation reactions at pH 3.0 were higher than the general activation energy for diffusion, there is no experimental evidence to suggest which reaction is the rate limiting step.

  • PDF

Chromium Speciation in Cr(III) Oxidation by Mn-Oxides: Relation to the Oxidation Mechanism (망간 산화물에 의한 3가 크롬의 산화반응에 미치는 크롬 화학종들의 영향)

  • Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.89-94
    • /
    • 1998
  • Various Mn-oxides can oxidize Cr(III) to Cr(VI). Behaviors of chromium species in the oxidation system, especially on the oxide surface, are expected to control the reaction. During Cr(III) oxidation by birnessite and pyrolusite, Cr species in the reaction system were determined to elucidate their effects on the oxidation. Capacities of Cr oxidation of the two Mn-oxides were quite different. Solution pH and initial Cr(III) concentration also had significant effects on the Cr(III) oxidation by Mn-oxides. Chromium oxidation by pyrolusite was less than 5% of the oxidation by birnessite. The high crystallinity of pyrolusite could be one of the reasons and the difficulty of Cr (III) diffusion to the positive pyrolusite surface and Cr(VI) and Cr(III) adsorption seems to be other controlling factors. At pH 3, adsorption or precipitation of Cr species on the surface of birnessite were not found. Small amount of Cr(VI) adsorption was found on the surface of pyrolusite, but arty Cr precipitation on the oxide surface was not found. Therefore Cr(III) oxidation at pH 3 seems to be controlled mainly by the characteristics of Mn-oxides. Chromiun oxidation by Mn-oxides is thermodynamically more favorable at higher solution pH. However as solution pH increased Cr oxidation by birnessite was significantly inhibited. For Cr oxidation by pyrolusite, as pH increased the oxidation increased, but as Cr(III) addition increased the reaction was inhibited. Under these conditions some unidentified fraction of Cr species was found and this fraction is considered to be Cr(III) precipitation an the oxide surface. Chromium(III) precipitation on the oxide surface seems to play an important role in limiting Cr(III) oxidation by armoring the reaction surface on Mn-oxides as well as lowering Cr(III) concentration available for the oxidation reaction.

  • PDF

High-Temperature Cesium (Cs) Retention Ability of Cs-Exchanged Birnessite (세슘(Cs)으로 이온 교환된 버네사이트의 고온에서의 Cs 고정 능력)

  • Yeongkyoo Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.313-321
    • /
    • 2023
  • Numerous studies have investigated the adsorptive sequestration of radioactive cesium in the natural environment. Among these studies, adsorption onto minerals and high-temperature treatment stand out as highly effective, as demonstrated by the use of zeolite. In this study, cesium was ion-exchanged with birnessite and subsequently underwent high-temperature treatment up to 1100℃ to investigate both mineral phase transformation and the leaching characteristics of cesium. Birnessite has a layered structure consisting of MnO6 octahedrons that share edges, demonstrating excellent cation adsorption capacity. The high-temperature treatment of cesium-ion-exchanged birnessite resulted in changes in the mineral phase, progressing from cryptomelane, bixbyite, birnessite to hausmannite as the temperature increased. This differs from the phase transformation observed in the tunneled manganese oxide mineral todorokite ion-exchanged with cesium, which shows phase transformation only to birnessite and hausmannite. The leaching of cesium from cesium-ion-exchanged birnessite was estimated by varying the reaction time using both distilled water and a 1 M NaCl solution. The leaching quantity changed according to the treatment temperature, reaction time, and type of reaction solution. Specifically, the cesium leaching was higher in the sample reacted with 1 M NaCl compared to the sample with distilled water and also increased with longer reaction time. For the samples reacted with distilled water, the cesium leaching initially increased and then decreased, while in the NaCl solution, the leaching decreased, increased again, and finally nearly stopped like the sample in the distilled water for the sample treated at 1100℃. These changes in leaching are closely associated with the mineral phases formed at different temperatures. The phase transformation to cryptomelane and birnessite enhanced cesium leaching, whereas bixbyite and hausmannite hindered leaching. Notably, hausmannite, the most stable phase occurring at the highest temperature, demonstrated the greatest ability to inhibit cesium leaching. This results strongly suggest that high-temperature treatment of cesium-ion-exchanged birnessite effectively immobilizes and sequesters cesium.

Mineral Products and Characteristics of Phase Transformation after Hydrothermal Treatment according to the Synthetic Method and Cation Combination during Birnessite Synthesis (버네사이트 합성 시 합성 방법 및 양이온 조건에 따른 생성 광물 및 열수처리 후 상전이 특성)

  • Min, Soyoung;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.509-517
    • /
    • 2019
  • The birnessite (7Å manganate, δ-MnO2) which is a manganese oxide and comprises manganese nodules, is a major manganese mineral on the earth surface and a precursor in the synthesis of todorokite. In this study birnessite was synthesized by three different methods: Feng et al. (2004) and Luo et al. (1998) based on redox reaction and Ma et al. (1999) based on reduction reaction. 12 birnessite samples were synthesized by different combinations of Na+ and K+ cations based on the base (OH-) and permanganate (MnO4-) reagents in the synthesis. The mineral compositions of synthesized birnessite were identified by XRD, and the two cation ratio in the mineral was measured by ICP. The products obtained after hydrothermal treatment of Mg-buserite, by the precursor of birnessite, was examined by XRD, and then phase transition to todorokite and their characteristics were compared. Our results show that the byproducts and the characteristics of phase transition by each synthetic method have different trends. Hausmannite (γ-Mn3O4) and feitknechtite (β-MnOOH) were formed by both methods in the redox reaction mechanism. By Feng et al. (2004)'s method, manganite (γ-MnOOH) phase only appeared when cation was predominantly Na+. Two birnessite samples synthesized by redox reaction mechanism showed phase transition to todorokite (10Å manganate, OMS-1) when both NaOH and KMnO4 were used together. However, single-phase birnessite was formed by Ma et al. (1999)'s method, and phase transition was confirmed only for the sample when the cation was only composed of Na+.

Removals of 1-Naphthol in Aqueous Solution Using Alginate Gel Beads with Entrapped Birnessites (버네사이트를 고정화한 알긴산 비드(Bir-AB)를 이용한 수용액 중 1-Naphthol의 제거)

  • Eom, Won-Suk;Lee, Doo-Hee;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.247-256
    • /
    • 2013
  • In this study, alginate beads containing birnessite (Bir-AB), a highly reactive oxidative catalyst for the transformation of phenolic compounds, was prepared and its 1-naphthol (1-NP) removal efficiency was investigated in a batch test. Based on scanning electron microscopy image, it can be inferred that the alginate gel cluster acts as a bridge which bind the birnessite particles together. Kinetic experiment with Bir-AB of different mixing ratios of birnessite to alginate (Bir : AG=0.25 : 1~1 : 1 w/w) indicate that pseudo-first order kinetic constants, $k(hr^{-1})$ for the 1-NP removals increased about 1.5 times when the birnessite mixing ratio was doubled. The removals of 1-NP was found to be dependent on solution pH and the pesudo-first order rate constants were increased from 0.331 $hr^{-1}$ at pH 10 to 0.661 $hr^{-1}$ at pH 4. The analysis of total organic carbon for the reaction solutions showed that a higher removal of dissolved organic carbon was achieved with Bir-AB as compared to birnessite. HPLC chromatographic analysis of the methanol extract after reaction of 1-NP with Bir-AB suggest that the reaction products could be removed through incorporation into the aliginate beads as a bound residue. Mn ions produced from the oxidative transformation of 1-NP by birnessite were also removed by sorption to Bir-AB. The Bir-AB was recovered quantitatively by simple filtration and was reused twice without significant loss of the initial reactivity.

Transformation of Endocrine Disrupting Chemicals (EDCs) by Manganese(IV) Oxide (망간산화물을 이용한 내분비계장애물질의 변환에 관한 연구)

  • Lee, Seung-Hwan;Choi, Yong-Ju;Chung, Jae-Shik;Nam, Taek-Woo;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • The occurrence of endocrine disrupting compounds (EDCs), chemicals that interfere with human hormone system, are increasing in the freshwater, waste water and subsurface as well. In this study, we determined the reactivity of three EDCs in the presence of birnessite. In aqueous phase, bisphenol A, 2,4-dichlorophenol and 17${\beta}$-estradiol, which possesses phenoxy-OH, were very rapidly transformed by birnessite: up to 99% of initial concentrations (50 mg/L for bisphenol A, 100mg/L for 2,4-dichlorophenol, and 1.5mg/L for 17${\beta}$-estradiol) were destroyed within 60 minutes. Especially, bisphenol A was the most reactive chemical, disappearing by 99% in a few minutes. The reaction occurred on the surface of birnessite, showing a linear increase of first-order kinetic constants with the increase of the surface area of birnessite. In soil slurry phase, the reactivity of birnessiteto EDCs was faster than in aqueous phase probably due to the cross coupling reaction of phenoxy radicals with soil organic matter. Considering the rapid transformation of the EDCs in the both phases, this oxidative cross coupling reaction mediated by birnessite would be an effective solution for the remediation of EDCs in environmental media, especially in soil.