• 제목/요약/키워드: Bipolar pulsed dc

검색결과 29건 처리시간 0.025초

듀티 싸이클 및 펄스 주파수가 TiAlN 코팅막의 미세구조와 기계적 특성에 미치는 영향에 관한 연구 (Effects of Duty Cycle and Pulse Frequency on the Microstructure and Mechanical Properties of TiAlN Coatings)

  • 전성용;황주연
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.447-452
    • /
    • 2014
  • This paper presents the effects of pulse plasma parameters such as duty cycle and pulse frequency on the properties of TiAlN coatings deposited by asymmetric bipolar pulsed DC magnetron sputtering systems. The results show that, with decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar structure to a dense structure with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than did DC prepared TiAlN coatings. Moreover, residual stress and nanoindentation hardness of pulsed sputtered TiAlN coatings increased with increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

A Buck-Boost Converter-Based Bipolar Pulse Generator

  • Elserougi, Ahmed A.;Massoud, Ahmed M.;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1422-1432
    • /
    • 2017
  • This paper presents a buck-boost converter-based bipolar pulse generator, which is able to generate bipolar exponential pulses across a resistive load. The concept of the proposed approach depends on operating the involved buck-boost converters in discontinuous current conduction mode with high-voltage gain and enhanced efficiency. A full design of the pulse generator and its passive components is presented to ensure generating the pulses with the desired specifications (rise time, pulse width, and pulse magnitude) for a given load resistance and input dc voltage. In case of moderate pulsed output voltages (i.e. few of kV), one module of the presented bipolar generator can be employed. While in case of high-voltage pulsed output, multi-module version can be employed, where each module is fed from an isolated dc source and their outputs are connected in series. Simulation models for the proposed approach are built to elucidate their performance in case of one-module as well as multi-module based generator. Finally, a scaled-down prototype for one-module of buck-boost converter-based bipolar pulse generator is implemented to validate the proposed concept.

기판바이어스 변화에 따른 반응성 마그네트론 스퍼터링에 의한 TiN 코팅 (TiN coatings by reactive magnetron sputtering under substrate bias)

  • 서평섭;한만근;박원근;전성용
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.45-46
    • /
    • 2008
  • Hard coatings of TiN which exhibit a large variation in their electrical resistivities, have been prepared in magnetron sputtering system using bipolar pulsed DC generator. TiN coatings have also been prepared using a DC generator in the same sputtering system under identical deposition conditions. Microstructural, Mechanical, Crystallographic properties of TiN films using continuous and bipolar pulsed DC generators were examined. Field emission scanning microscope and Nanoindenter have been used to characterize the coatings.

  • PDF

비대칭 펄스 DC 반응성 스퍼터링 법에 의한 CNx 박막의 기계적 특성에 관한 연구 (A Study on the Mechanical Properties of CNx Thin Films Deposited by Asymmetric Bipolar Pulsed D.C. Sputtering)

  • 김준호;김대욱;차병철;김선광;이병석;전신희;김대일;유용주
    • 열처리공학회지
    • /
    • 제22권5호
    • /
    • pp.290-297
    • /
    • 2009
  • In case of using Asymmetric Bipolar Pulsed DC (ABPD) power generator, thin film is efficiently deposited as ions are getting higher energy by suppressing target poisoning and electric arc. In this article, the mechanical properties of CNx thin films deposited on the STS 316L were compared with DC and ABPD power generators. The CNx thin films deposited with ABPD clearly improved wear resistance by higher ratio of sp3CN as compared with DC. Nb interlayer affected to increase the value of 10N of adhesion between CNx thin films and substrate. But, CNx thin films deposited with ABPD couldn't endure to wear load and decreased wear resistance as the films were too thinner than substrate. Nevertheless the higher substrate bias energy applied to perform the dense films, it wasn't shown benefits about the wear properties from DC sputtering. But, in case of using ABPD sputtering, the wear resistance was largely improved without changing morphology despite of thin films.

비대칭 펄스 DC 반응성 마그네트론 스퍼터링으로 증착된 나노결정질 TiN 박막의 성장거동 (Growing Behavior of Nanocrystalline TiN Films by Asymmetric Pulsed DC Reactive Magnetron Sputtering)

  • 한만근;전성용
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.342-347
    • /
    • 2011
  • Nanocrystalline TiN films were deposited on Si(100) substrate using asymmetric pulsed DC reactive magnetron sputtering. We investigated the growing behavior and the structural properties of TiN films with change of duty cycle and pulsed frequency. Grain size of TiN films were decreased from 87.2 nm to 9.8 nm with decrease of duty cycle. The $2{\theta}$ values for (111) and (200) crystallographic planes of the TiN films were also decreased with decrease of duty cycle. This shift in $2{\theta}$ could be attributed to compressive stress in the TiN coatings. Thus, the change of plasma parameter has a strong influence not only on the microstructure but also on the residual stresses of TiN films.

Al:ZnO의 펄스 스퍼터 증착에서 주파수에 따른 플라즈마의 특성과 기판 온도 변화 (Plasma Characteristics and Substrate Temperature Change in Al:ZnO Pulse Sputter Deposition: Effects of Frequency)

  • 양원균;주정훈
    • 한국표면공학회지
    • /
    • 제40권5호
    • /
    • pp.209-213
    • /
    • 2007
  • Change of the plasma volume by pulse frequency in a bipolar pulsed DC unbalanced magnetron sputtering was investigated. As increasing the frequency at off duty 10% and at a constant power, the plasma volume was lengthened in vertical direction from the AZO target. When there is an electrically floated substrate, the vertical length of the plasma area was not affected by the pulse frequency. Instead, the diameter of the plasma volume was increased. We found that the temperature rise of a substrate was affected by the pulse frequency, too. As increasing it, the maximum temperature rise of a glass substrate was decreased from $132^{\circ}C\;to\;108^{\circ}C$.

Bipolar Pulse Bias Effects on the Properties of MgO Reactively Deposited by Inductively Coupled Plasma-Assisted Magnetron Sputtering

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • 제23권3호
    • /
    • pp.145-150
    • /
    • 2014
  • MgO thin films were deposited by internal ICP-assisted reactive-magnetron sputtering with bipolar pulse bias on a substrate to suppress random arcs. Mg is reactively sputtered by a bipolar pulsed DC power of 100 kHz into ICP generated by a dielectrically shielded internal antenna. At a mass flow ratio of $Ar/O_2$ = 10 : 2 and an ICP/sputter power ratio of 1 : 1, optimal film properties were obtained (a powder-like crystal orientation distribution and a RMS surface roughness of approximately 0.42 nm). A bipolar pulse substrate bias at a proper frequency (~a few kHz) prevented random arc events. The crystalline preferred orientations varied between the (111), (200) and (220) orientations. By optimizing the plasma conditions, films having similar bulk crystallinity characteristics (JCPDS data) were successfully obtained.