• 제목/요약/키워드: Bipedal walking

검색결과 29건 처리시간 0.026초

Control Strategy for Modifiable Bipedal Walking on Unknown Uneven Terrain

  • Lee, Woong-Ki;Chwa, Dongkyoung;Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1787-1792
    • /
    • 2016
  • Previous walking pattern generation methods could generate walking patterns that allow only straight walking on flat and uneven terrain. They were unable to generate modifiable walking patterns whereby the sagittal and lateral step lengths and walking direction can be changed at every footstep. This paper proposes a novel walking pattern generation method to realize modifiable walking of humanoid robots on unknown uneven terrain. The proposed method employs a walking pattern generator based on the 3-D linear inverted pendulum model (LIPM), which enables a humanoid robot to vary its walking patterns at every footstep. A control strategy for walking on unknown uneven terrain is proposed. Virtual spring-damper (VSD) models are used to compensate for the disturbances that occur between the robot and the terrain when the robot walks on uneven terrain with unknown height. In addition, methods for generating the foot and vertical center of mass (COM) of the 3-D LIPM trajectories are developed to realize stable walking on unknown uneven terrain. The proposed method is implemented on a small-sized humanoid robot platform, DARwIn-OP and its effectiveness is demonstrated experimentally.

발가락과 뒤꿈치 조인트를 갖는 유연한 로봇 발 설계 (Design of a Flexible Robot Foot with Toes and Heel Joints)

  • 박진희;김현술;권상주
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.446-454
    • /
    • 2011
  • In terms of the anatomy and mechanics of the human foot, a flexible robot foot with toes and heel joints is designed for a bipedal walking robot. We suggest three design considerations in determining foot design parameters which are critical for walking stability. Those include the position of the frontal toe, the stiffness of toes and heels, and the position of the ankle joint. Compared with the conventional foot with flat sale, the proposed foot is advantageous for human-like walking due to the inherent structural flexibility and the reasonable parameter values. Simulation results are provided to determine the design parameters and also show that the proposed foot enables smaller energy consumption.

얀센 메커니즘을 이용한 자동주행 보행 로봇의 최적 설계 (Optimal design of an automatic walking robot based on Jansen's Mechanism)

  • 김동찬;김무환;이민수;박제열;조성욱
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.540-546
    • /
    • 2017
  • Bipedal robots tend to have greater mobility than conventional treaded or wheeled robots yet they are commonly complicated by instabilities in balance. This paper presents a bipedal robot based upon Jansen's locomotive mechanism which addresses these challenges in stability and efficiency. In order to achieve a functioning robot, we considered a multitude of variables in its motion including, the Ground Score, Drag Score, step size, foot lift, stride, and instantaneous speed of the Jansen mechanism. Matlab and Jansen Opt solver were used to optimize the legs of the robot. A trial and error experimental method was used to determine the best combination of link lengths, and m.Sketch was used to model our results. Finally, we drew the entirety of the robot's figure by using the Edison design.

  • PDF

휴머노이드 로봇의 뉴럴네트워크 제어 (Neural Network Control of Humanoid Robot)

  • 김동원;김낙현;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제16권10호
    • /
    • pp.963-968
    • /
    • 2010
  • This paper handles ZMP based control that is inspired by neural networks for humanoid robot walking on varying sloped surfaces. Humanoid robots are currently one of the most exciting research topics in the field of robotics, and maintaining stability while they are standing, walking or moving is a key concern. To ensure a steady and smooth walking gait of such robots, a feedforward type of neural network architecture, trained by the back propagation algorithm is employed. The inputs and outputs of the neural network architecture are the ZMPx and ZMPy errors of the robot, and the x, y positions of the robot, respectively. The neural network developed allows the controller to generate the desired balance of the robot positions, resulting in a steady gait for the robot as it moves around on a flat floor, and when it is descending slope. In this paper, experiments of humanoid robot walking are carried out, in which the actual position data from a prototype robot are measured in real time situations, and fed into a neural network inspired controller designed for stable bipedal walking.

이족 보행로봇의 동적 보행 제어에 관한 연구 (A Study on Dynamic Walking Control of Biped Robot)

  • 심병균;정양근;심현석;이우송
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.245-254
    • /
    • 2014
  • In this paper, stable and robust dynamic walking for a biped motion is proposed. To success this objective, the following structures are processed. In this paper, the proposed control method is one that adjusts actual zero moment position to move to the closest possible point in the stable area instead of following desired zero moment position. This minimizes energy consumption with the smallest joint movements. The proposed control method makes mechanical energy that drives lower limb of the bipedal robot efficient. In this paper, walking experiment is carried out with the three control structures mentioned above. The trajectory generated by off-line is illustrated by performing to walking on flat ground. experiment with an obstacle whose height is lower than that of trajectory is executed to validate dynamic motion.

2족 보행 로봇을 위한 허용 ZMP (Zero Moment Point) 영역의 활용을 통한 에너지 효율적인 기준 보행 궤적 생성 (Energy-Efficient Reference Walking Trajectory Generation Using Allowable ZMP (Zero Moment Point) Region for Biped Robots)

  • 신혁기;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.1029-1036
    • /
    • 2011
  • An energy-efficient reference walking trajectory generation algorithm is suggested utilizing allowable ZMP (Zero-Moment-Point) region, which maxmizes the energy efficiency for cyclic gaits, based on three-dimensional LIPM (Linear Inverted Pendulum Model) for biped robots. As observed in natural human walking, variable ZMP manipulation is suggested, in which ZMP moves within the allowable region to reduce the joint stress (i.e., rapid acceleration and deceleration of body), and hence to reduce the consumed energy. In addition, opimization of footstep planning is conducted to decide the optimal step-length and body height for a given forward mean velocity to minimize a suitable energy performance - amount of energy required to carry a unit weight a unit distance. In this planning, in order to ensure physically realizable walking trajectory, we also considered geometrical constraints, ZMP stability condition, friction constraint, and yawing moment constraint. Simulations are performed with a 12-DOF 3D biped robot model to verify the effectiveness of the proposed method.

A review on numerical models and controllers for biped locomotion over leveled and uneven terrains

  • Varma, Navaneeth;Jolly, K.G.;Suresh, K.S.
    • Advances in robotics research
    • /
    • 제2권2호
    • /
    • pp.151-159
    • /
    • 2018
  • The evolution of bipedal robots was the foundation stone for development of Humanoid robots. The highly complex and non-linear dynamic of human walking made it very difficult for researchers to simulate the gait patterns under different conditions. Simple controllers were developed initially using basic mechanics like Linear Inverted Pendulum (LIP) model and later on advanced into complex control systems with dynamic stability with the help of high accuracy feedback systems and efficient real-time optimization algorithms. This paper illustrates a number of significant mathematical models and controllers developed so far in the field of bipeds and humanoids. The key facts and ideas are extracted and categorized in order to describe it in a comprehensible structure.

아동 크기 휴머노이드 로봇의 개발 (Development of Child-Sized Humanoid Robot)

  • 이기남;박장현;유영재
    • 한국지능시스템학회논문지
    • /
    • 제23권1호
    • /
    • pp.24-28
    • /
    • 2013
  • 이 논문에서는 아동 크기 휴머노이드 로봇의 설계 및 개발과정에 대하여 기술한다. 경량형 휴머노이드 로봇의 설계 개념을 제시하고, 3차원 설계 툴을 이용하여 1m 이상 크기 휴머노이드 로봇의 메커니즘을 설계하였다. 로봇의 구동을 위한 하드웨어는 제한된 로봇의 무게 내에서 최적의 성능을 낼 수 있도록 설계하였다. 3차원 설계 툴을 사용하여 설계한 로봇의 프레임 및 링크들은 가볍고 강도가 좋은 재료를 선정하고 정밀 가공을 통해 제작하였다. 제작된 아동 크기의 휴머노이드 로봇은 역기구학, 균형제어를 적용하여 기본 동작을 구현하고 그 성능을 실험을 통하여 확인하였다.