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휴머노이드 로봇의 뉴럴네트워크 제어 

Neural Network Control of Humanoid Robot 
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Abstract: This paper handles ZMP based control that is inspired by neural networks for humanoid robot walking on varying sloped 

surfaces. Humanoid robots are currently one of the most exciting research topics in the field of robotics, and maintaining stability 

while they are standing, walking or moving is a key concern. To ensure a steady and smooth walking gait of such robots, a 

feedforward type of neural network architecture, trained by the back propagation algorithm is employed. The inputs and outputs of 

the neural network architecture are the ZMPx and ZMPy errors of the robot, and the x, y positions of the robot, respectively. The 

neural network developed allows the controller to generate the desired balance of the robot positions, resulting in a steady gait for the 

robot as it moves around on a flat floor, and when it is descending slope. In this paper, experiments of humanoid robot walking are 

carried out, in which the actual position data from a prototype robot are measured in real time situations, and fed into a neural 

network inspired controller designed for stable bipedal walking. 
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I. 서론 

Throughout history, the human body and mind have inspired 

artists, engineers, and scientists. The field of humanoid robotics 

focuses on the creation of robots that are directly inspired by 

human capabilities. These robots usually share similar kinematics 

to humans, as well as similar sensing and behavior. The 

motivations that have driven the development of humanoid robots 

vary widely [1]. The primary motives are expected to assist 

human beings, cooperate with people and be stable enough not to 

fall down to avoid hurting nearby humans, other objects as well as 

damaging their own bodies. Keeping the humanoid robots stable 

and steady when they are standing, walking or moving is one of 

the fundamental functions and most important issue that needs to 

be addressed. To handle this important issue, many intelligent 

control schemes have been proposed [2-5]. However, most of 

these proposed schemes have produced restricted simulation 

results only, and so it is difficult to analyze the real stabilities of 

actual humanoid robots based on their walking patterns.  

As for the indices of biped walking robots to improve robotic 

stability, the zero moment point (ZMP) has been introduced and is 

commonly used for the gait planning of biped humanoid robots. 

This is a key point in the control of ASIMO [6], a 26-DOF 

humanoid robot developed by Honda Motor Company in 2000. 

Vukobratovic et al., [7] investigated the walking dynamics and 

has proposed ZMP as a good index for walking stability. Kim et al. 

[8,9] employed various computational intelligence methods to 

design a model of robotic locomotion based on the determination 

of the ZMP trajectories. The ZMP, which is defined as the point 

on the ground about which the sum of all the moments of the 

active forces equals zero, is indispensable in ensuring dynamic 

stability of a biped robot. If the ZMP is inside the ground support 

polygon, then the biped robot maintains its dynamic balance. 

When the ZMP reaches an edge of the support polygon, the robot 

becomes unstable and will tend to rotate around that edge. If the 

ZMP falls outside the support polygon, the robot cannot be 

dynamically stable, and so will fall down unless controlled 

dynamically to maintain some desired motions. As a result, the 

ZMP trajectories are used as a reference for stable walking in 

humanoid robots. 

In this paper, a prototype humanoid robot is designed, and ZMP 

humanoid robot control based and inspired on neural network is 

demonstrated. Because the neural network is learning from 

idealized ZMP trajectories, the detailed modeling procedures for 

ensuring the stability of the robot and the physical errors from the 

mechanical points of view are not required. From the 

experimental results, the prototype humanoid robot system shows 

good balance using the designed neural network controller 

thereby demonstrating and verifying the controller’s performance.  

 

II. HUMANOID ROBOT SYSTEM AND ITS ZMP 

A biped humanoid robot is designed and implemented. The 

robot has 19 joints, and the locations of the joints for performing 

the required motions are shown in Fig. 1 in that there are three 

degree of freedoms (DOF) are assigned to each arm, three and 

two DOFs are assigned to the hip and the ankles, respectively, and 

one to each of the two knees. The height and total weight are 

about 325mm and 1,500g, including the batteries. Each joint is 

driven by a RC servomotor, consisting of a DC motor, a gear, and 

a simple controller. Each of the RC servomotors is mounted in the 
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link structure. Each foot is equipped with four force sensors and 

rubber bushing which protects the sensors and the robot from the 

touchdown impacts. The specifications of the proposed humanoid 

robot are given in Table 1 and more detailed information and a 

block diagram of the robotic system can be found in [8]. 

As a significant stability criterion of ensuring robotic balance, 

the ZMP trajectory is used, and the real ZMP is calculated based 

on the data of the force sensors equipped on each foot. In addition, 

the ZMP is experimentally obtained for various operating 

environments, such as a flat floor and ascending on sloped surface. 

During walking, two different situations arise in sequence: the 

statically stable double-support phase, in which the robot is 

supported on both feet simultaneously, and the statically unstable 

single-support phase, when only one foot of the robot is in contact 

with the ground while the other is being transferred from the back 

to front positions si that the locomotion of the robot changes its 

structure during a single walking cycle. In the ZMP trajectories, 

the ZMP positions of the humanoid walking robot are under each 

foot during the single support phases. The ZMP concept has been 

properly comprehended by researchers and it is widely used and 

frequently cited. Its interpretation is summarized below and 

further discussion on the details on the ZMP and the conditions 

can be found in [10].  

Fig. 2 shows the concepts of the ZMP and stability margin, 

where P is the point at which Tx = 0 and Ty =0, and Tx and Ty 

represent the moments around the x- and y-axes, generated by the 

reaction force Fr and the reaction torque Tr so that the point P is 

defined as the zero moment point. 

When the ZMP exists within the ground support surface, the 

contact between the ground and the support leg is stable:  

 ( , ,0)
ZMP ZMP ZMP
P x y S= ∈  

where PZMP denotes the position of the ZMP, and S denotes the 

domain of the support surface. This condition indicates that no 

rotation around the edges of the foot occurs.  

If the ZMP is within the convex hull of all contact points (the 

region for stability), the biped robot is able to walk. If the 

minimum distance between the ZMP and the boundary of the 

stable region is large, the moment preventing the biped robot from 

tipping over is also large. The minimum distance dzmp between the 

ZMP and the boundary of the stability region is called the stability 

margin [11].  

In many studies, the ZMP coordinates are computed using a 

model of the robot and information from the joint encoders but a 

more direct approach is employed here using measurement data 

from sensors mounted at the robot feet. Fig. 3 illustrates the 

positions of the force sensors on the two feet. The type of force 
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그림 1. 휴머노이드 로봇의 조인트 각도표시. 

Fig.  1. Joint angle representation of humanoid robot. 

 

표   1. 휴머노이드 로봇의 사양. 

Table 1. Specification of the humanoid robot. 

Size Height : 325mm 

Weight 1.5kg 

CPU 
S3C3410X (ARM7 core, 16bit, 40Mhz) 

embedded in robot 

Actuator 

(RC Servo motors) 
HS-5945MG (Torque : 11kg·cm at 4.8V)

Degree of freedom 19 DOF (Leg+Arm+Waist)= 2*6 + 3*2+1

Power source Battery 

Actuator AA Size Ni-Cd (6V, 1,100mAh ) 

Control board AAA size Ni-Cd (7.2V, 250mAh) 

 

 

그림 2. ZMP와 안정도 마진에 대한 개념. 

Fig.  2. Concept of ZMP and stability margin. 
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그림 3. 발바닥에 위치한 힘센서의 분산형태 

Fig.  3. Distribution of the force sensors on the feet. 
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sensor used in the experiments is the FlexiForce sensor A201 

which are attached to the four corners of the sole plates, and 

measurements are carried out in real-time. The foot pressure is 

obtained by summing the force signals and it is easy to calculate 

the actual ZMP data from this force sensor data. The feet support 

phase ZMPs in the local foot coordinate frame are computed by  
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where fi is the force applied to the right and the left foot sensors, 

and ri is the sensor position, which form vectors and they are also 

shown in Fig. 3. In the figure, O is the origin of the feet’s 

coordinate frame, which is located in the lower left side of the left 

foot. 

 

III. NEURAL NETWORK CONTROL 

In this section, the neural network (NN) algorithm needed for 

the biped control is presented. Neural networks have gained 

popularity as an emerging and effective computational technology 

offering new avenues for exploring the dynamics of many 

nonlinear applications. NNs have flexible mathematical structures 

which are capable of identifying complex and nonlinear 

relationships between the inputs and outputs of system data sets 

and their architectures are now widely acknowledged to offer 

useful and efficient methods, particularly in problems where the 

characteristics of the processes are difficult to describe by 

physically reasoned equations. For more detailed descriptions 

refer to the Refs [12,13]. 

The topology of any NN determines the accuracy and the 

domain of representation of a particular NN model. Therefore, the 

determination of the numbers of hidden layers and neurons in the 

hidden layer is more arbitrary and application-dependent. In this 

paper, a single hidden layer is considered, and ten neurons in the 

hidden layer are determined. For a given training set of input-

output pairs (x, d), the back-propagation algorithm performs two 

phases of data flow. First, the input pattern x is propagated from 

the input layer to the output layer and, as a result of this forward 

flow of data, it produces a predicted output y. Then, the error 

signals resulting from the difference between d and y are back-

propagated from the output layer to the previous layers, which 

then update their weights. The detailed back-propagation 

algorithm can be found in [13]. As seen from Fig. 4, 2, 10 and 2 

processing elements in the input layer, the hidden layer and the 

output layer, are considered based on the trial-and-error method. 

The errors of the ZMP trajectories, as x- and the y-coordinates are 

input into the input layer, and the compensation angles of the x- 

and the y-coordinates for the humanoid robot walking are output 

from the network.  

To design the ZMP based neural network controller, the 

humanoid robot is simplified as having a mass M moving like an 

inverted pendulum, as shown in Fig. 5.  

If the humanoid robot is proceeding in the forward direction 

without falling down, its center of mass (CoM) is shifting 

gradually. At this moment, the joints in the left and right feet, 
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These joints in the hip and ankle of the robot are for yawing 

motions which maintain the balance of the robot while standing 

and walking. By compensating the joint angle 
x

θ∆  to these 

yawing joints, the CoM of the robot, varying in the right and left 

portions will adjust the overall position of the robot. The joints 

3
,

l
θ

3r
θ  in the hip are responsible for pitching of the robot which 

keeps the upper body of the robot upright when walking. The joint 

angle 
y

θ∆  can also be compensated for by the pitching joints so 

that the CoM of the robot will vary from being behind and in front. 

The adjusted position of the robot, and its corresponding upright, 

are tuned from the controller gradually. Finally a reasonable 

trajectory of the ZMP can be obtained from the walking humanoid 

robot by correcting the values ,
x

θ∆ .

y
θ∆  The obtained ZMP is 

compared with the desired ZMP, and their errors are employed as 

input data for the neural network controller.  

The ZMP based neural network controller is depicted in Fig. 6 

where by using the predefined footstep and its height, the walking 

pattern for the robot is made, and each of the 19 actuators work to 

follow the desired pattern. Then the humanoid robot starts to 

move and the four force sensing resistor (FSR) sensors on each 

foot measure the force signals in real-time, and the foot pressure is 

obtained; from this force sensor data, the ZMP of the robot is 

calculated using Equ. 1 and after calculating the actual ZMP of the 

humanoid robot, it is compared with the desired one. The 

differences between the two are used as input data for the neural 

network controller, which makes the yawing and the pitching joint 

signals follow the desired ZMP. The inputs and outputs of the 

neural network, having it architecture as two inputs, two outputs, 

and 10 nodes in the hidden layer are the errors of the ZMP 
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그림 4. 휴머노이드 로봇제어를 위한 뉴럴네트워크의 구조. 

Fig.  4. Architecture of the neural network for the humanoid robot

controller. 

x
θ∆

 

그림 5. 질량 M을 가진 휴머노이드 로봇의 간략화된 그림. 

Fig.  5. Simplified humanoid robot with mass M. 
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trajectories, the x- and y-coordinates and the ,
x

θ∆
y

θ∆  angles, 

respectively.  

 

IV. EXPERIMENTAL RESULTS 

This section discusses the performance of the proposed 

controller for humanoid robot walking where the experimental 

results have been obtained for the situation shown in Fig. 7 in 

which a real humanoid robot has been considered.  

Using RS-232 communication, the operational signals, the 

sensor values, and the ZMP location are being transmitted and 

received between the computer and the humanoid robot. A 40Mhz, 

16bit microcontroller carries out an important role in generating 

the control signal for each joint in the RC servomotors, and carries 

out the sampling procedure from the FRS sensors on the feet, 

calculates the ZMP trajectories and the ,
x

θ∆
y

θ∆  angles from 

the neural network, and transmits the calculated ZMP values to 

the computer via the RS-232 communication. The values from the 

FSR sensors on each foot are sampled by a 10bit, 8channel A/D 

converter, with a 50ms cycling interval on the control board.  

The walking motions of the humanoid robot on flat ground are 

shown in Fig. 8. The proposed humanoid robot is able to walk one 

step of length 48 mm per 1.4s on flat floor. In Fig. 9, the 

corresponding ZMP trajectories are shown for walking on the flat 
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그림 6. NN제어와 학습단계. 

Fig.  6. NN controlling and learning phase. 

 

그림 7. 휴머노이드 로봇을 위한 실험환경 셋업. 

Fig.  7. Experimental setup for the humanoid robot. 

 

 

그림 8. 평지를 보행하는 휴머노이드 로봇. 

Fig.  8. Humanoid robot walking on flat floor. 
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그림 9. 그림 8에 해당되며 제어기가 없는 휴머노이드 로봇

의 ZMP 궤적. 

Fig.  9. ZMP trajectory of the humanoid robot without controller

corresponding to Fig. 8. 
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그림 10. 그림 8에 해당되며 NN 제어기를 가진 휴머노이드

로봇의 ZMP 궤적. 

Fig.  10. ZMP trajectory of the humanoid robot with the NN

controller corresponding to Fig. 8. 
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그림 11. 평지를 보행하는 휴머노이드 로봇의 X-축 에러. 

Fig.  11. X-axis error of the humanoid robot walking on flat floor. 
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floor. The humanoid robot should follow the desired ZMP, as 

shown in the figure but the robot is not able to do this well without 

effective control whereas when the neural network controller is 

used, the robot tracks the desired ZMP very well. To compare the 

errors between the two cases, the x- and the y-axes errors of the 

humanoid robot walking on flat floor are shown in Fig. 12 and 

Table 2 shows the root mean squared error (RMSE) values 

corresponding to these cases. The results compare well in respect 

to demonstrating the effective functionality of the new controller 
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그림 15. 그림 13에 해당되며 NN 제어기를 가진 휴머노이드

로봇의 ZMP 궤적. 

Fig.  15. ZMP trajectory of the humanoid robot with the NN

controller corresponding to Fig. 13. 
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그림 16. 경사면을 보행하는 휴머노이드 로봇의 X-축 에러. 

Fig.  16. X-axis error of the humanoid robot walking on an

ascending slope. 
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그림 17. 경사면을 보행하는 휴머노이드 로봇의 Y-축 에러. 

Fig.  17. Y-axis error of the humanoid robot walking on an ascending

slope. 
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그림 12. 평지를 보행하는 휴머노이드 로봇의 Y-축 에러. 

Fig.  12. Y-axis error of the humanoid robot walking on flat floor. 

 

표   2. 평지를 보행하는 휴머노이드 로봇의 정확성 비교. 

Table 2. Accuracy of the humanoid robot walking on flat ground. 

Functionality of NN control x-axis y-axis 

Without good control 10.7973 5.0807 

With NN inspired control 2.5060 1.2869 

 

 

그림 13. 경사면을 보행하는 휴머노이드 로봇. 

Fig.  13. Humanoid robot walking on an ascending slope. 
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그림 14. 그림 13에 해당되며 제어기가 없는 휴머노이드 로

봇의 ZMP 궤적. 

Fig.  14. ZMP trajectory of the humanoid robot without controller 

corresponding to Fig. 13. 
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developed. 

Using the same method, the humanoid robot walking on 

ascending slope is considered, and the results are shown in the 

following figures. Fig. 13 shows the side view of the robot 

walking up sloped surfaces and Fig. 14 shows the corresponding 

ZMP trajectories of the robot walking without control (the 

trajectories with control are shown in Fig. 15). To compare the 

errors from these cases, Fig. 16 presents the x-axis errors and Fig. 

17 presents the y-axis errors. Tables 3 presents the RMS errosrs 

based on the functionality of the controller for the humanoid robot 

walking on the ascending slope.  

 

V. CONCLUSIONS 

Neural network control for biped humanoid robot has been 

proposed considering flat floor and sloped surface. A neural 

network architecture with two inputs, two outputs, and 10 neurons 

in the hidden layer are considered; the errors of the ZMPx, and the 

ZMPy of the robot and its x, y positions are taken as the inputs and 

the outputs of the NN, respectively. To verify the functionality of 

the NN controller, experiments of a prototype humanoid robot 

performing walking actions have been carried out; the desired and 

actual ZMP trajectories with the errors have been also presented 

for comparing the performance of the NN controller. The 

experimental results presented demonstrate that the proposed 

humanoid robot system, with the neural network controller, shows 

good balance, and verifies that the new controller is able to give 

satisfactory walking performances. 
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표   3. 경사면을 보행하는 휴머노이드 로봇의 정확성 비교.

Table 3. Accuracy of the humanoid robot walking on an ascending 

slope. 

Functionality of NN control x- axis y- axis 

Without control 9.6741 7.2160 

With NN controller 2.6961 1.2950 

 


