• Title/Summary/Keyword: Biosensors

Search Result 296, Processing Time 0.025 seconds

Review on the Recent Advances in Composite Based Highoutput Piezo-Triboelectric Energy Harvesters (압전-마찰전기 복합 소재 기반의 고출력 에너지 하베스팅 기술 개발 리뷰)

  • Rasheed, Aamir;Park, Hyunje;Sohn, Min Kyun;Lee, Tae Hyeong;Kang, Dae Joon
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.54-88
    • /
    • 2020
  • Global effort has resulted in tremendous progress with energy harvesters that extract mechanical energy from ambient sources, convert it to electrical energy, and use it for systems such as wrist watches, mobile electronic devices, wireless sensor nodes, health monitoring, and biosensors. However, harvesting a single energy source only still pauses a great challenge in driving sustainable and maintenance-free monitoring and sensing devices. Over the last few years, research on high-performance mechanical energy harvesters at the micro and nanoscale has been directed toward the development of hybrid devices that either aim to harvest mechanical energy in addition to other types of energies simultaneously or to exploit multiple mechanisms to more effectively harvest mechanical energy. Herein, we appraise the rational designs for multiple energy harvesting, specifically state-of-the-art hybrid mechanical energy harvesters that employ multiple piezoelectric and triboelectric mechanisms to efficiently harvest mechanical energy. We identify the critical material parameters and device design criteria that lead to high-performance hybrid mechanical energy harvesters. Finally, we address the future perspectives and remaining challenges in the field.

A Creatinine Biosensor with Reduced Interference from Creatine (크레아틴의 방해영향을 줄인 크레아티닌 바이오센서)

  • Gu, Hyunwoo;Gwon, Kihak;Lim, Eunhye;Shin, Jae Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.249-255
    • /
    • 2012
  • The planar-type amperometric creatinine biosensor employing an additional enzyme layer containing creatine kinase and adenosine triphosphate was developed to eliminate severe interference from creatine. In the additional enzyme layer, an interfering substance, creatine is converted to noninterfering product, phosphocreatine. Furthermore, the carbon electrode electroplated with Pt black(Pt-B) was employed to fabricate creatinine biosensors with improved sensor performance(e.g., sensitivity, reliability, and reproducibility). The creatinine levels in an unknown sample were determined within less than 5% errors using creatinine microsensors equipped in a flow-cell cartridge.

Disposable Strip-Type Biosensors for Amperometric Determination of Galactose

  • Gwon, Kihak;Lee, Seonhwa;Nam, Hakhyun;Shin, Jae Ho
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.310-317
    • /
    • 2020
  • A development of disposable strip-type galactose sensor for point-of-care testing (POCT) was studied, which was constructed using screen-printed carbon electrodes. Galactose levels were determined by the redox reaction of galactose oxidase in the presence of potassium ferricyanide as an electron transfer mediator in a small sample volume (i.e., less than 1 µL). The optimal performance of biosensor was systematically designated by varying applied potential, operating pH, mediator concentration, and amount of enzyme on the electrode. The sensor system was identified as a highly active for the galactose measurement in terms of the sensitivity (slope = 4.76 ± 0.05 nA/µM) with high sensor-to-sensor reproducibility, the linearity (R2 = 0.9915 in galactose concentration range from 0 to 400 µM), and response time (t95% = <17 s). A lower applied potential (i.e., 0.25 V vs. Ag/AgCl) allowed to minimize interference from readily oxidizable metabolites such as ascorbic acid, acetaminophen, uric acid, and acetoacetic acid. The proposed galactose sensor represents a promising system with advantage for use in POCT.

Application of Acacia as an Alternative to Horseradish Peroxidase for the Determination of Hydrogen Peroxide (과산화수소 정량을 위한 서양고추냉이 과산화효소 대용 아카시아의 활용)

  • Yoon, Kil Joong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.369-374
    • /
    • 2017
  • The curtailment of production cost is important for the mass production of biosensors. Since horseradish peroxidase, which is a key material of enzyme electrodes for hydrogen peroxide analysis is rather expensive, this has been a limiting factor for fabricating carbon paste based enzyme electrodes. In this paper, the acacia leaf tissue as a zymogen easily obtainable in our living environment was used as an alternative to horseradish peroxidase for developing a hydrogen peroxide sensor and the electrochemical properties were evaluated. Ten or more electrochemical parameters alongside the other experimental results acquired by the potentiostatic method demonstrated that our enzyme electrodes can be used for the quantitative analysis of hydrogen peroxide. This also indicates that acacia leaves can take the place of the marketed peroxidase.

Rapid Detection Methods for Food-Borne Pathogens in Milk and Dairy Products using an Optical Biosensor (광바이오센서를 이용한 우유 및 유제품의 식중독균 신속검출법)

  • Choi, Eun-Young;Chang, Jin Hee;Hong, Sung Wook;Kim, So-Young;Bae, Hyo Ju;Park, Beom Young;Oh, Mi-Hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.165-170
    • /
    • 2013
  • Milk and dairy products are not only excellent foods for humans, providing plentiful varied nutrients, but are also a good medium for detrimental food-borne pathogens. Although the food safety field has stabilized due to standardization of food processing, such as the hazard analysis critical control point (HACCP), outbreaks and cases caused by food-borne pathogens still occur at high rates. In approximately 30% of cases, the disease-causing pathogenic organism is undetermined. Recently, a biosensor was developed that has a simple and fast response and overcomes the problems of conventional methods such as cultivation, immuno-assay, polymerase chain reaction, and microarray. Due to the high selectivity and sensitivity of optical biosensors, it is a suitable method for the immediate detection of food-borne pathogens in milk and dairy products.

  • PDF

Nanohybridization of Polyoxometalate and Nanomaterials for Electrochemical Application (전기 화학 응용을 위한 폴리옥소메탈레이트와 나노물질의 나노하이브리드화)

  • Yang, MinHo;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.363-368
    • /
    • 2018
  • Polyoxometalates (POMs) have outstanding properties and a great deal of potential for electrochemical applications. As POMs are highly soluble, the implementation of POMs in various functional materials is required to fully use their potential in electrochemical devices. Here, we will review the recently developed immobilization methods to incorporate POMs into conductive nanomaterials, such as nanocarbons and conducting polymers. Various immobilization strategies involve POMs entrapped in conducting polymer matrix and integration of POMs into nanocarbons using a Langmuir-Blodgett technique, a layer-by-layer self-assembly, and an electrochemical in-situ polymerization. In addition, we will review a variety of electrochemical applications including electrocatalysts for water oxidation, lithium-ion batteries, supercapacitors, and electrochemical biosensors.

Fabrication and Characteristics of MOSFET Protein Sensor Using Nano SAMs (자기조립 단분자막을 이용한 MOSFET형 단백질 센서의 제작 및 특성)

  • Han, Seung-Woo;Park, Keun-Yong;Kim, Min-Suk;Kim, Hong-Seok;Bae, Young-Seuk;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.90-95
    • /
    • 2004
  • Protein and gene detection have been growing importance in medical diagnostics. Field effect transistor (FET) - type biosensors have many advantages such as miniaturization, standardization, and mass-production. In this work, we have fabricated metal-oxide-semiconductor (MOS) FET that operates as molecular recognitions based electronic sensor. Measurements were taken with the devices under phosphate buffered saline solution. The drain current ($I_{D}$) was decreased after forming self-assembled mono-layers (SAMs) used to capture the protein, which resulted from the negative charges of SAMs, and increased after forming protein by 11.5% at $V_{G}$ = 0 V due to the positive charges of protein.

Studies on the Metabolism of Sinigrin in Rat (흰쥐에서 sinigrin 대사에 관한 연구)

  • Huh, Keun;Shin, Uk-Seob;Lee, Sang-Il;Song, Min-Ik
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.11-15
    • /
    • 1994
  • The detoxifying properties of cruciferous vegetables components have been the subject of several recent investigations. Evidences from many biochemical and pharmacological studies indicated that higher consumption of cruciferous vegetables is associated with lower incidence of harmful actions such as hepatotoxicity and oxidative stress in animal and human populations. Recently, it has been reported that drug metabolizing and detoxifying enzyme activities were increased by cruciferous vegetable extract in which sinigrin is known to be a main active component, accounting for about 2 to 3 percents of total extract. The detoxifying effect of sinigrin has been well reported in several literatures. The metabolism of sinigrin in animal, however, has not been reported yet. That led us to study the metabolism of sinigrin in rat. Sinigrin is nown to be metabolized into three compounds, i.e., allyl isothiocyanate, glucose and potassium phosphate in cruciferous vegetables. Allyl isothiocyanate was formed in rat hepatic mitochondrial fraction in dose and incubation time dependent manner, that was confirmed by HPLC. Glucose formation was came up with results similar to that of allyl isothiocyanate. Three hours after i.p. administration of sinigrin to rat, allyl isothiocyanate appeared in rat liver, and five hours later it was detected in liver and blood. The above results suggested that sinigrin might be metabolized into allyl isothiocyanate, glucose and potassium phosphate in rat.

  • PDF

Modulation of the Metal(loid) Specificity of Whole-Cell Bioreporters by Genetic Engineering of ZntR Metal-Binding Loops

  • Kim, Hyojin;Jang, Geupil;Kim, Bong-Gyu;Yoon, Youngdae
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.681-688
    • /
    • 2020
  • Bacterial cell-based biosensors, or whole-cell bioreporters (WCBs), are an alternative tool for the quantification of hazardous materials. Most WCBs share similar working mechanisms. In brief, the recognition of a target by sensing domains induces a biological event, such as changes in protein conformation or gene expression, providing a basis for quantification. WCBs targeting heavy metal(loid)s employ metalloregulators as sensing domains and control the expression of genes in the presence of target metal(loid) ions, but the diversity of targets, specificity, and sensitivity of these WCBs are limited. In this study, we genetically engineered the metal-binding loop (MBL) of ZntR, which controls the znt-operon in Escherichia coli. In the MBL of ZntR, three Cys sites interact with metal ions. Based on the crystal structure of ZntR, MBL sequences were modified by site-directed mutagenesis. As a result, the metal-sensing properties of WCBs differed depending on amino acid sequences and the new selectivity to Cr or Pb was observed. Although there is room for improvement, our results support the use of currently available WCBs as a platform to generate new WCBs to target other environmental pollutants including metal(loid)s.

Detection of Pathogenic Salmonella Using a Surface Plasmon Resonance Biosensor (표면플라즈몬공명 바이오센서를 이용한 살모넬라 검출)

  • Cho, Han-Keun;Kim, Gi-Young;Kim, Woon-Ho;Sung, Min-Sun
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.116-123
    • /
    • 2010
  • Rapid detection of foodborne pathogens has been a major challenge for the food industry. Salmonella contamination is well known in all foods including pasteurised milk. The possibility of specific detection of Salmonella Enteritidis by surface plasmon resonance (SPR) biosensor was explored using a commercially available portable SPR sensor. Self assembly technique was adopted to immobilize anti-Salmonella antibodies on the gold sensing surface of the SPR sensor. The concentration of polyclonal antibody for use in the SPR biosensor was chosen to 1.0 mg/mL. Experiments were conducted at near real-time with results obtained for one SPR biosensor assay within 1 hour. The limit of detection for Salmonella Enteritidis was determined to be $10^6$ CFU/mL in both PBS buffer and milk samples. The assay sensitivity was not significantly affected by milk matrix. Our results showed that it would be possible for employing the SPR biosensor to detect Salmonella Enteritidis in near real-time.