Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00437

Disposable Strip-Type Biosensors for Amperometric Determination of Galactose  

Gwon, Kihak (Department of Chemistry, Kwangwoon University)
Lee, Seonhwa (Department of Chemistry, Kwangwoon University)
Nam, Hakhyun (Department of Chemistry, Kwangwoon University)
Shin, Jae Ho (Department of Chemistry, Kwangwoon University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.3, 2020 , pp. 310-317 More about this Journal
Abstract
A development of disposable strip-type galactose sensor for point-of-care testing (POCT) was studied, which was constructed using screen-printed carbon electrodes. Galactose levels were determined by the redox reaction of galactose oxidase in the presence of potassium ferricyanide as an electron transfer mediator in a small sample volume (i.e., less than 1 µL). The optimal performance of biosensor was systematically designated by varying applied potential, operating pH, mediator concentration, and amount of enzyme on the electrode. The sensor system was identified as a highly active for the galactose measurement in terms of the sensitivity (slope = 4.76 ± 0.05 nA/µM) with high sensor-to-sensor reproducibility, the linearity (R2 = 0.9915 in galactose concentration range from 0 to 400 µM), and response time (t95% = <17 s). A lower applied potential (i.e., 0.25 V vs. Ag/AgCl) allowed to minimize interference from readily oxidizable metabolites such as ascorbic acid, acetaminophen, uric acid, and acetoacetic acid. The proposed galactose sensor represents a promising system with advantage for use in POCT.
Keywords
Galactose Sensor; Disposable Strip-Type Electrode; Point-Of-Care Testing (POCT); Screen-Printed Carbon Electrodes (SPCEs);
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Charmantray, N. Touisni, L. Hecquet, C. Mousty, Electroanalysis, 2013, 25(3), 630-635.   DOI
2 S. I. Brahim, D. Maharajh, D. Narinesingh, A. G.-Elie, Anal. Lett., 2002, 35(5), 797-812.   DOI
3 K. S. Park, S. S. Cho, D. Quan, J. S. Lee, G. S. Cha, H. Nam, Anal. Sci. Technol., 2007, 20(5), 393-399.
4 K. Khun, Z. H. Ibupoto, O. Nur, M. Willander, J. Sens, 2012, 2012, 1-7.
5 P. Kanyong, R. M. Pemberton, S. K. Jackson, J. P. Hart, Anal. Biochem., 2013, 435(2), 114-119.   DOI
6 S. K. Sharma, R. Singhal, B. D. Malhotra, N. Sehgal, A. Kumar, Electrochim. Acta., 2004, 49(15), 2479-2485.   DOI
7 S. K. Sharma, S. K. Singh, N. Sehgal, A. Kumar, Food Chem., 2004, 88(2), 299-303.   DOI
8 J. Li, Z. Bai, Y. Mao, Q. Sun, X. Ning, J. Zheng, Electroanalysis, 2017, 29(10), 2307-2315.   DOI
9 J. M. Henderson, F. W. Fales, Clin. Chem., 1980, 26(2), 282-285.   DOI
10 G. A. Mason, G. K. Summer, H. H. Dutton, R. C. Schwaner, Clin. Chem., 1977, 23(6), 971-974.   DOI
11 M. Fortelius, P. Mattjus, Chem. Phys. Lipids, 2006, 142, 103-110.   DOI
12 H. Gulce, I. Ataman, A. Gulce, A. Yildiz, Enzyme Microb. Technol., 2002, 30(1), 41-44.   DOI
13 A. Fujimoto, Y. Okano, T. Miyagi, G. Isshiki, T. Oura, Clini. Chem., 2000, 46(6), 806-810.   DOI
14 C. J. M. Stroop, C. A. Bush, R. L. Marple, W. R. LaCourse, Anal. Biochem., 2002, 303(2), 176-185.   DOI
15 P. Schadewaldt, H.-W. Hammen, K. Loganathan, A. Bodner, U. Wendel, Clin. Che., 2000, 46(5), 612-619.   DOI
16 J. Arora, S. Nandwani, M. Bhambi, C. S. Pundir, Anal. Chim. Acta., 2009, 647(2), 195-201.   DOI
17 G. Cui, S. J. Kim, S. H. Choi, H. Nam, G. S. Cha, Anal. Chem., 2000, 72(8), 1925-1929.   DOI
18 A. Chaubey, B. D. Malhotra, Biosens. Bioelectron., 2002, 17(6-7), 441-456.   DOI
19 S. Ferri, K. Kojima, K. Sode, J. Diabetes Sci. Technol., 2011, 5, 1068-1076.   DOI
20 E. Ekinci, A. Pasahan, Eur. Polym. J., 2004, 40(8), 1605-1608.   DOI
21 M. A. T. Gilmartin, J. P. Hart, Analyst, 1995, 120(4), 1029-1045.   DOI
22 A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E.V. Plotkin, L.D.L. Scott, A.P.F. Turner, Anal. Chem., 1984, 56(4), 667-671.   DOI
23 J. H. T. Luong, C. Masson, R. S. Brown, K. B. Male, A. L. Nguyen, Biosens. Bioelectron., 1994, 9(8), 577-584.   DOI
24 J. P. Hart, S. A. Wring, Trends Anal. Chem., 1997, 16(2), 89-103.   DOI
25 G. Cui, J. H. Yoo, B. W. Woo, S. S. Kim, G. S. Cha, H. Nam, Talanta, 2001, 54(6), 1105-1111.   DOI
26 B. Dalkiran, P. E. Erden, E. Kilic, Anal. Bioanal. Chem., 2016, 408(16), 4329-4339.   DOI
27 P. Manowitz, P. W. Stoecker, A. M. Yacyntch, Biosens. Bioelectron., 1995, 10(3-4), 359-370.   DOI
28 P. Kanyong, G. Hughes, R. M. Pemberton, S. K. Jackson, J. P. Hart, Anal. Lett., 2016, 49(2), 236-244.   DOI
29 J. D. Newman, A. P. F. Turner, Biosens. Bioelectron., 2005, 20(12), 2435-2453.   DOI
30 P. J. Taylor, E. Kmetec, J. M. Johnson, Anal. Chem., 1977, 49(6), 789-794.   DOI
31 G. Cui, J. H. Yoo, J. Yoo, S. W. Lee, H. Nam, G. S. Cha, Electroanalysis, 2001, 13(3), 224-228.   DOI
32 T. Yao, K. Takashima, Biosens. Bioelectron, 1998, 13(1), 67-73.   DOI
33 F. A. Vega, C. G. Nunez, B. Weigel, B. Hitzmann, J. C. D. Ricci, Anal. Chim. Acta., 1998, 373(1), 57-62.   DOI
34 J. Njagi, S. Andreescu, Biosens. Bioelectron, 2007, 23(2), 168-175.   DOI
35 B. Olsson, H. Lundback, G. Johansson, Anal. Chim. Acta., 1985, 167, 123-136.   DOI