Browse > Article
http://dx.doi.org/10.31613/ceramist.2020.23.1.05

Review on the Recent Advances in Composite Based Highoutput Piezo-Triboelectric Energy Harvesters  

Rasheed, Aamir (Interdisciplinary Course of Physics and Chemistry, Sungkyunkwan University)
Park, Hyunje (Department of Physics, Sungkyunkwan University)
Sohn, Min Kyun (Department of Physics, Sungkyunkwan University)
Lee, Tae Hyeong (Department of Physics, Sungkyunkwan University)
Kang, Dae Joon (Department of Physics, Sungkyunkwan University)
Publication Information
Ceramist / v.23, no.1, 2020 , pp. 54-88 More about this Journal
Abstract
Global effort has resulted in tremendous progress with energy harvesters that extract mechanical energy from ambient sources, convert it to electrical energy, and use it for systems such as wrist watches, mobile electronic devices, wireless sensor nodes, health monitoring, and biosensors. However, harvesting a single energy source only still pauses a great challenge in driving sustainable and maintenance-free monitoring and sensing devices. Over the last few years, research on high-performance mechanical energy harvesters at the micro and nanoscale has been directed toward the development of hybrid devices that either aim to harvest mechanical energy in addition to other types of energies simultaneously or to exploit multiple mechanisms to more effectively harvest mechanical energy. Herein, we appraise the rational designs for multiple energy harvesting, specifically state-of-the-art hybrid mechanical energy harvesters that employ multiple piezoelectric and triboelectric mechanisms to efficiently harvest mechanical energy. We identify the critical material parameters and device design criteria that lead to high-performance hybrid mechanical energy harvesters. Finally, we address the future perspectives and remaining challenges in the field.
Keywords
Piezoelectric energy harvesters; Triboelectric energy harvesters; Hybrid energy harvester; Hybridization mechanisms;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. L. Wang, J. Chen, and L. Lin, "Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors," Energy Environ. Sci. 8, 2250-2282 (2015)   DOI
2 Z. Gao, J. Zhou, Y. Gu, P. Fei, Y. Hao, G. Bao, and Z. L. Wang, "Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor," J. Appl. Phys. 105 (11), 113707 (2009).   DOI
3 Z. L. Wang, "Energy Harvesting Using Piezoelectric Nanowires-A Correspondence on "Energy Harvesting Using Nanowires?" by Alexe et al," Adv. Mater. 21, 1311-1315 (2009)   DOI
4 H. Guo, Z. Wen, Y. Zi, M. H. Yeh, J. Wang, L. Zhu, C. Hu, and Z. L. Wang, "A Water- Proof Triboelectric-Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments," Adv. Energy. Mater. 6, (2016)
5 H. Zhong, Z. Wu, X. Li, W. Xu, S. Xu, S. Zhang, Z. Xu, H. Chen, and S. Lin, "Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow," Carbon. 105, 199-204 (2016)   DOI
6 Semsudin, N.A.A., et al., "Integrated hybrid micro energy harvester based on thermal and vibration using op-amp for biomedical devices". Asian J. Sci. Res. 10, 34-42 (2017)   DOI
7 Jiang, C., et al., “Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect”. ACS Nano. 11, 9405-9412 (2017).   DOI
8 E. Nour, O. Nur, and M. Willander, "Zinc oxide piezoelectric nano-generators for low frequency applications," Semicond. Sci. Technol. 32, 064005 (2017)   DOI
9 Z. L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, and S. Xu, "Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezophototronics," Mater. Sci. Eng. R Rep. 70, 320-329 (2010)   DOI
10 K. Y. Lee, M. K. Gupta, and S.-W. Kim, "Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics," Nano Energy. 14, 139-160 (2015)   DOI
11 K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J. L. Kang, Z. L. Wang, and K. J. Lee, "Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates," Nano. Lette. 10, 4939-4943 (2010)   DOI
12 Z.-H. Lin, Y. Yang, J. M. Wu, Y. Liu, zF. Zhang, and Z. L. Wang, "BaTiO3 nanotubes-based flexible and transparent nanogenerators," J. Phys. Chem. Lett. 3, 3599-3604 (2012)   DOI
13 K. I. Park, M. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, and Z. L. Wang, "Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons," Adv. Mater. 24, 2999-3004 (2012)   DOI
14 J. Briscoe, N. Jalali, P. Woolliams, M. Stewart, P. M. Weaver, M. Cain, and S. Dunn, "Measurement techniques for piezoelectric nanogenerators," Energy Environ. Sci. 6, 3035-3045 (2013)   DOI
15 You, M.-H., et al., "Self-Powered Flexible Hybrid Piezoelectric-Pyroelectric Nanogenerator based on Non-woven Nanofiber Membranes". J. Mater. Chem. A. 6, 3500-3509 (2018)   DOI
16 Vivekananthan, V., et al., "A sliding mode contact electrification based triboelectricelectromagnetic hybrid generator for smallscale biomechanical energy harvesting," Micro and Nano Syst Lett. 7, 1-8 (2019)   DOI
17 H. Kim, S. Priya, H. Stephanou, and K. Uchino, "Consideration of impedance matching techniques for efficient piezoelectric energy harvesting," IEEE transactions on ultrasonics, IEEE. T. Ultrason. Ferr. 54, (2007)
18 S. Niu, Y. S. Zhou, S. Wang, Y. Liu, L. Lin, Y. Bando, and Z. L. Wang, "Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system," Nano Energy. 8, 150-156 (2014)   DOI
19 Y. Qian, D .J .Kang, "Poly(dimethylsiloxane)/ZnO nanoflakes/three-dimensional graphene heterostructures for high-performance flexible energy harvesters with simultaneous piezoelectric triboelectric generation," ACS Appl. Mater. Interfaces 10, 32281-32288 (2018)   DOI
20 X. Yang and W. A. Daoud, "Synergetic effects in composite-based flexible hybrid mechanical energy harvesting generator," J. Mater. Chem. A. 5, 9113-9121 (2017)   DOI
21 W. He, Y. Qian, B. S. Lee, F. Zhang, A. Rasheed, J. E. Jung, D. J. Kang, "Ultrahigh Output Piezoelectric and Triboelectric Hybrid Nanogenerators Based on ZnO Nanoflakes/Polydimethylsiloxane Composite Films," ACS Appl. Mater. Interfaces 2018, 10, 44415-44420 (2018)
22 C. Dagdeviren, B. D. Yang, Y. Su, P. L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, and X. Feng, "Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm," Proc. Natl. Acad. Sci. 111, 1927-1932 (2014)   DOI
23 S. Gupta, A. Tanwar, R. Mukhiya, and S. S. Kumar, "Design and Simulations of ZnObased Piezoelectric Energy Harvester," Paper presented in ISSS International Conference on Smart Materials, Structures and Systems in Bangalore, India, 5-7 July 2017,
24 Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, and Z. L. Wang, "Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators," J. Mater. Chem. 19, 9260-9264 (2009)   DOI
25 Y. Qiu, H. Zhang, L. Hu, D. Yang, L. Wang, B. Wang, J. Ji, G. Liu, X. Liu, and J. Lin, "Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates," Nanoscale 4, 6568-6573 (2012)   DOI
26 S. Xu, B. J. Hansen, and Z. L. Wang, "Piezoelectric-nanowire-enabled power source for driving wireless microelectronics," Nat. Commun. 1, 93 (2010)   DOI
27 J. Kwon, W. Seung, B. K. Sharma, S.-W. Kim, and J.-H. Ahn, "A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes," Energy Environ. Sci. 5, 8970-8975 (2012)   DOI
28 C. Chang, V. H. Tran, J. Wang, Y.-K. Fuh, and L. Lin, "Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency," Nano. Lett. 10, 726-731 (2010)   DOI
29 B. J. Hansen, Y. Liu, R. Yang, and Z. L. Wang, "Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy," ACS Nano. 4, 3647-3652 (2010)   DOI
30 L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, and J. A. Rogers, "High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-cotrifluoroethylene)," Nat. Commun. 4, 1633 (2013).   DOI
31 P. Gopal and N. A. Spaldin, "Polarization, piezoelectric constants, and elastic constants of ZnO, MgO, and CdO," J. Electron Mater. 35, 538-542 (2006)   DOI
32 X. Chen, H. Tian, X. Li, J. Shao, Y. Ding, N. An, and Y. Zhou, "A high performance P (VDF-TrFE) nanogenerator with selfconnected and vertically integrated fibers by patterned EHD pulling," Nanoscale 7, 11536-11544 (2015)   DOI
33 B. W. An, J. H. Shin, S.-Y. Kim, J. Kim, S. Ji, J. Park, Y. Lee, J. Jang, Y.-G. Park, and E. Cho, "Smart Sensor Systems for Wearable Electronic Devices," Polymers 9, 303 (2017).   DOI
34 A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, "Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring," Chem. Rev. 115, 4571-4606 (2015)   DOI
35 S. Cha, S. M. Kim, H. Kim, J. Ku, J. I. Sohn, Y. J. Park, B. G. Song, M. H. Jung, E. K. Lee, and B. L. Choi, "Porous PVDF as effective sonic wave driven nanogenerators," Nano. Lett. 11, 5142-5147 (2011)   DOI
36 Y. Mao, P. Zhao, G. McConohy, H. Yang, Y. Tong, and X. Wang, "Sponge-Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self-Powered Electronic Systems," Adv. Energy. Mater. 4, (2014)
37 B. Kumar and S.-W. Kim, "Recent advances in power generation through piezoelectric nanogenerators," J. Mater. Chem. 21, 18946-18958 (2011)   DOI
38 T. Bateman, "Elastic moduli of single-crystal zinc oxide," J. Appl. Phys. 33, 3309-3312 (1962).   DOI
39 R. F. Pierret, Semiconductor device fundamentals. 2nd edn (Addison Wesley, India, 1996) pp. 470-90
40 W. Park, G.-C. Yi, J.-W. Kim, and S.-M. Park, "Schottky nanocontacts on ZnO nanorod arrays," Appl. Phys. Lett. 82, 4358-4360 (2003)   DOI
41 R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator," Nano. Lett. 9, 1201-1205 (2009)   DOI
42 M. Lee, J. Bae, J. Lee, C.-S. Lee, S. Hong, and Z. L. Wang, "Self-powered environmental sensor system driven by nanogenerators," Energy. Environ. Sci. 4, 3359-3363 (2011)   DOI
43 K. H. Kim, K. Y. Lee, J. S. Seo, B. Kumar, and S. W. Kim, "Paper-based piezoelectric nanogenerators with high thermal stability," Small. 7, 2577-2580 (2011)   DOI
44 Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science. 312, 242-246 (2006)   DOI
45 L. Y. Chen, B. C.-K. Tee, A. L. Chortos, G. Schwartz, V. Tse, D. J. Lipomi, H.-S. P. Wong, M. V. McConnell, and Z. Bao, "Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care," Nat. Commun. 5, 5028 (2014).   DOI
46 M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, "Biomedical applications of untethered mobile milli/microrobots," Proc. IEEE. 103, 205-224 (2015).
47 Z. L. Wang and W. Wu, "Nanotechnologyenabled energy harvesting for self-powered micro-/nanosystems," Angew. Chem. 51, 11700-11721 (2012)   DOI
48 V. Nguyen, R. Zhu, and R. Yang, "Environmental effects on nanogenerators," Nano Energy. 14, 49-61 (2015).   DOI
49 K. Y. Lee, D. Kim, J. H. Lee, T. Y. Kim, M. K. Gupta, and S. W. Kim, "Unidirectional High-Power Generation via Stress-Induced Dipole Alignment from ZnSnO3 Nanocubes/Polymer Hybrid Piezoelectric Nanogenerator," Adv. Func. Mater. 24, 37-43 (2014)   DOI
50 J.-H. Lee, K. Y. Lee, B. Kumar, N. T. Tien, N.-E. Lee, and S.-W. Kim, "Highly sensitive stretchable transparent piezoelectric nanogenerators," Energy Environ. Sci. 6, 169-175 (2013)   DOI
51 J. H. Lee, H. Ryu, T. Y. Kim, S. S. Kwak, H. J. Yoon, T. H. Kim, W. Seung, and S. W. Kim, "Thermally Induced Strain-Coupled Highly Stretchable and Sensitive Pyroelectric Nanogenerators," Adv. Energy. Mater. 5 (2015)
52 F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, "Flexible triboelectric generator," Nano Energy. 1, 328-334 (2012)   DOI
53 J. H. Lee, K. Y. Lee, M. K. Gupta, T. Y. Kim, D. Y. Lee, J. Oh, C. Ryu, W. J. Yoo, C. Y. Kang, and S. J. Yoon, "Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator," Adv. Mater. 26, 765-769 (2014)   DOI
54 Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, "Logic gates and computation from assembled nanowire building blocks," Science. 294, 1313-1317 (2001)   DOI
55 Z. Shao, X. Zhang, X. Wang, and S. Chang, "Electrical characteristics of Pt-ZnO Schottky nano-contact," Sci China Phys Mech. 53, 64-67 (2010)
56 J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, "Carrier density and Schottky barrier on the performance of DC nanogenerator," Nano. Lett. 8, 328-332 (2008)   DOI
57 D. Davies, "Harmful effects and damage to electronics by electrostatic discharges," J. Electrostat. 16, 329-342 (1985)   DOI
58 P. Shaw, "Experiments on tribo-electricity. I.-The tribo-electric series," Proc. R. Soc. Lond. A. 94, 16-33 (1917)   DOI
59 Z. L. Wang, "Towards self-powered nanosystems: from nanogenerators to nanopiezotronics," Adv. Func. Mater. 18, 3553-3567 (2008).   DOI
60 L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, and Z. L. Wang, "Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy," Nano. Lett. 13, 2916-2923 (2013)   DOI
61 D. Kim, Y. Oh, B.-W. Hwang, S.-B. Jeon, S.-J. Park, and Y.-K. Choi, "Triboelectric nanogenerator based on the internal motion of powder with a package structure design," ACS Nano 10, 1017-1024 (2015)   DOI
62 B. Meng, W. Tang, Z.-h. Too, X. Zhang, M. Han, W. Liu, and H. Zhang, "A transparent single-friction-surface triboelectric generator and self-powered touch sensor," Energy Environ. Sci. 6, 3235-3240 (2013)   DOI
63 D. Zhu, M. J. Tudor, and S. P. Beeby, "Strategies for increasing the operating frequency range of vibration energy harvesters: a review," Meas Sci. Technol. 21, 022001 (2009)   DOI
64 C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, "Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy," Adv. Mater. 26, 3580- 3591 (2014).   DOI
65 H. Yamazaki and T. Kitayama, "Pyroelectric properties of polymer-ferroelectric composites," Ferroelectrics. 33, 147-153 (1981)   DOI
66 Q. Leng, L. Chen, H. Guo, J. Liu, G. Liu, C. Hu, and Y. Xi, "Harvesting heat energy from hot/cold water with a pyroelectric generator," J. Mater. Chem. A. 2, 11940-11947 (2014)   DOI
67 X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, K. Dai, Y. Zhang, Z. You, and Z. L. Wang, "Harvesting ambient vibration energy over a wide frequency range for self-powered electronics," ACS Nano. 11, 1728-1735 (2017)   DOI
68 W. Seung, M. K. Gupta, K. Y. Lee, K.-S. Shin, J.-H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim, and S.-W. Kim, "Nanopatterned textile-based wearable triboelectric nanogenerator," ACS Nano. 9, 3501-3509 (2015)   DOI
69 K. Y. Lee, S. K. Kim, J. H. Lee, D. Seol, M. K. Gupta, Y. Kim, and S. W. Kim, "Controllable charge transfer by ferroelectric polarization mediated triboelectricity," Adv. Func. Mater. 26, 3067-3073 (2016)   DOI
70 J. H. Lee, R. Hinchet, S. K. Kim, S. Kim, and S.-W. Kim, "Shape memory polymer-based self-healing triboelectric nanogenerator," Energy Environ. Sci. 8, 3605-3613 (2015)   DOI
71 X. Yang and W. A. Daoud, "Triboelectric and Piezoelectric Effects in a Combined Tribo-Piezoelectric Nanogenerator Based on an Interfacial ZnO Nanostructure," Adv. Func. Mater. 26, 8194-8201 (2016)   DOI
72 Yang, Y., et al., Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 7, 785-790 (2012).   DOI
73 F. R. Fan, W. Tang, and Z. L. Wang, "Flexible nanogenerators for energy harvesting and self-powered electronics," Adv. Mater. 28, 4283-4305 (2016)   DOI
74 J.-H. Lee, J. Kim, T. Y. Kim, M. S. Al Hossain, S.-W. Kim, and J. H. Kim, "All-inone energy harvesting and storage devices," J. Mater. Chem. A. 4, 7983-7999 (2016)   DOI
75 Q. Zheng, B. Shi, Z. Li, and Z. L. Wang, "Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems," Adv. Sci. 4, 1700029 (2017).   DOI
76 Z. L. Wang, G. Zhu, Y. Yang, S. Wang, and C. Pan, "Progress in nanogenerators for portable electronics," Materials Today 15, 532-543 (2012)   DOI
77 Y. Yang, H. Zhang, S. Lee, D. Kim, W. Hwang, and Z. L. Wang, "Hybrid energy cell for degradation of methyl orange by selfpowered electrocatalytic oxidation," Nano Lett. 13, 803-808 (2013)   DOI
78 Wang, S., L. Lin, and Z.L. Wang, "Triboelectric nanogenerators as self-powered active sensors." Nano Energy. 11, 436-462(2015).   DOI
79 S. Chen, X. Tao, W. Zeng, B. Yang, and S. Shang, "Quantifying Energy Harvested from Contact-Mode Hybrid Nanogenerators with Cascaded Piezoelectric and Triboelectric Units," Adv. Energy. Mater. 7, (2017)
80 Wang, X., et al. "Flexible triboelectric and piezoelectric coupling nanogenerator based on electrospinning P(VDF-TRFE) nanowires. Paper presented in 28th International Conference on Micro Electro Mechanical Systems in Estoril," Portugal. IEEE (110-13) 2015
81 L. S. McCarty and G. M. Whitesides, "Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets," Angew. Chem. 47, 2188-2207 (2008)   DOI
82 T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang, and M. Zhu, "Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers," Nano Energy. 14, 226-235 (2015)   DOI
83 P. Bai, G. Zhu, Y. S. Zhou, S. Wang, J. Ma, G. Zhang, and Z. L. Wang, "Dipole-momentinduced effect on contact electrification for triboelectric nanogenerators," Nano Res. 7, 990-997 (2014)   DOI
84 G. Romano, G. Mantini, A. Di Carlo, A. D'Amico, C. Falconi, and Z. L. Wang, "Piezoelectric potential in vertically aligned nanowires for high output nanogenerators," Nanotechnology. 22, 465401 (2011)   DOI
85 X. Li, Z.-H. Lin, G. Cheng, X. Wen, Y. Liu, S. Niu, and Z. L. Wang, "3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor," ACS Nano. 8, 10674-10681 (2014)   DOI
86 L. Dhakar, F. E. H. Tay, and C. Lee, "Development of a broadband triboelectric energy harvester with SU-8 micropillars," J. Micro Electro Mech. Syst 24, 91-99 (2015)
87 Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, "Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator," ACS Nano. 10, 4797-4805 (2016)   DOI
88 Z. L. Wang, L. Lin, J. Chen, S. Niu, and Y. Zi, "Triboelectric Nanogenerator: Vertical Contact-Separation Mode", in Triboelectric Nanogenerators (Springer, New York, 2016), 23-47 (2016)
89 S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, and H. J. Shin, "Transparent flexible graphene triboelectric nanogenerators," Adv. Mater. 26, 3918-3925 (2014)   DOI
90 M. Dresselhaus and I. Thomas, "Alternative energy technologies," Nature. 414, 332-337 (2001)   DOI
91 Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, "ZnO Nanostructures for Dye-Sensitized Solar Cells," Adv. Mater. 21, 4087-4108 (2009)   DOI
92 F. J. DiSalvo, "Thermoelectric cooling and power generation," Science. 285, 703-706 (1999)   DOI
93 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, and D. Vashaee, "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science. 320, 634-638 (2008)   DOI
94 H. Li, L. Su, S. Kuang, Y. Fan, Y. Wu, Z. L. Wang, and G. Zhu, "Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity," Nano. Res. 10, 785-793 (2017)   DOI
95 Zhao, C., et al., "Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting." Nano Energy. 57, 440-449 (2019)   DOI
96 Chen, C., et al., A fully encapsulated piezoelectric-triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources. Express Polym. Lett. 13, 533-542 (2019)   DOI
97 Y. Zhu, B. Yang, J. Liu, X. Wang, X. Chen, and C. Yang, "An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF," J. Microelectromech. S. 24, 513-515 (2015)   DOI
98 G. Hassan, F. Khan, A. Hassan, S. Ali, J. Bae, and C. H. Lee, "A flat-panel-shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting," Nanotechnology. 28, 175402 (2017)   DOI
99 G. Castle, "Contact charging between insulators," J. Electrostat. 40, 13-20 (1997).   DOI
100 J. Lowell and A. Rose-Innes, "Contact electrification," Adv. Phys. 29, 947-1023 (1980)   DOI
101 R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34 (2009)   DOI
102 X. Wang, B. Yang, J. Liu, Y. Zhu, C. Yang, and Q. He, "A flexible triboelectricpiezoelectric hybrid nanogenerator based on P (VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices," Sci. Rep. 6, 36409 (2016)   DOI
103 S. Roundy and E. Takahashi, "A planar electromagnetic energy harvesting transducer using a multi-pole magnetic plate," Actuator A Phys. 195, 98-104 (2013)   DOI
104 L. Gu, N. Cui, L. Cheng, Q. Xu, S. Bai, M. Yuan, W. Wu, J. Liu, Y. Zhao, and F. Ma, "Flexible fiber nanogenerator with 209 V output voltage directly powers a lightemitting diode," Nano. lett. 13, 91-94 (2012)   DOI
105 G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, and Z. L. Wang, "Functional electrical stimulation by nanogenerator with 58 V output voltage," Nano. lett. 12, 3086-3090 (2012)   DOI
106 W.-S. Jung, M.-G. Kang, H. G. Moon, S.-H. Baek, S.-J. Yoon, Z.-L. Wang, S.-W. Kim, and C.-Y. Kang, "High output piezo/triboelectric hybrid generator," Sci. Rep. 5, 9309 (2015)   DOI
107 H. Van Ngoc and D. J. Kang, "Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes," Nanoscale 8, 5059-5066 (2016)   DOI
108 Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P. K. Yang, F. Yi, and Z. L. Wang, "Triboelectric-Pyroelectric-Piezoelectric Hybrid Cell for High-Efficiency Energy-Harvesting and Self-Powered Sensing," Adv. Mater. 27, 2340-2347 (2015)   DOI
109 N. R. Alluri, A. Chandrasekhar, and S.-J. Kim, "Exalted Electric Output via Piezo- Triboelectric Coupling/Sustainable Butterfly Wing Structure Type Multiunit Hybrid Nanogenerator," ACS Sustain. Chem. Eng. 6, 1919-1933 (2018)   DOI
110 M. Lee, R. Yang, C. Li, and Z. L. Wang, "Nanowire- Quantum Dot Hybridized Cell for Harvesting Sound and Solar Energies," The J. Phys. Chem. Lett. 1, 2929-2935 (2010)   DOI
111 C. Xu, X. Wang, and Z. L. Wang, "Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies," J. Amer. Chem. Soc. 131, 5866-5872 (2009)   DOI
112 M. Han, X.-S. Zhang, B. Meng, W. Liu, W. Tang, X. Sun, W. Wang, and H. Zhang, "r-Shaped hybrid nanogenerator with enhanced piezoelectricity," ACS Nano. 7, 8554-8560 (2013)   DOI
113 X. Chen, M. Han, H. Chen, X. Cheng, Y. Song, Z. Su, Y. Jiang, and H. Zhang, "A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P (VDF-TrFE) nanofibers," Nanoscale 9, 1263-1270 (2017).   DOI
114 G. Suo, Y. Yu, Z. Zhang, S. Wang, P. Zhao, J. Li, and X. Wang, "Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film," ACS Appl. Mater. Interfaces 8, 34335-34341 (2016)   DOI
115 P. Li, S. Gao, H. Cai, and L. Wu, "Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester," Micro. syst. Technol. 22, 727-739 (2016)   DOI
116 X. Wu, A. Khaligh, and Y. Xu, "Modeling, design and optimization of hybrid electromagnetic and piezoelectric MEMS energy scavengers" Paper presented in IEEE Custom Integrated Circuits Conference in San Jose, CA, USA (177-80), 2008
117 D.-Y. Lee, H. Kim, H.-M. Li, A.-R. Jang, Y.-D. Lim, S. N. Cha, Y. J. Park, D. J. Kang, and W. J. Yoo, "Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator," Nanotechnology. 24, 175402 (2013)   DOI
118 M. Han, X. Zhang, W. Liu, X. Sun, X. Peng, and H. Zhang, "Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism," Sci. China. Technol. Sci. 56, 1835-1841 (2013)   DOI
119 Chen Xu and Zhong Lin Wang, "Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy," Adv. Mater. 23, 873-877 (2011)   DOI
120 C. Pan, W. Guo, L. Dong, G. Zhu, and Z. L. Wang, "Optical Fiber-Based Core-Shell Coaxially Structured Hybrid Cells for Self- Powered Nanosystems," Adv. Mater. 24, 3356-3361 (2012)   DOI
121 Y. Yang, H. Zhang, Z.-H. Lin, Y. Liu, J. Chen, Z. Lin, Y. S. Zhou, C. P. Wong, and Z. L. Wang, "A hybrid energy cell for selfpowered water splitting," Energy Environ. Sci. 6, 2429-2434 (2013)   DOI
122 L. Zheng, G. Cheng, J. Chen, L. Lin, J. Wang, Y. Liu, H. Li, and Z. L. Wang, "A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock," Adv. Energy. Mater. 5, 1501152 (2015)   DOI
123 J. He, T. Wen, S. Qian, Z. Zhang, Z. Tian, J. Zhu, J. Mu, X. Hou, W. Geng, and J. Cho, "Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system," Nano Energy. 43, 326-339 (2017).   DOI
124 B. P. Nabar, Z. Çelik-Butler, and D. P. Butler, "Piezoelectric ZnO nanorod carpet as a NEMS vibrational energy harvester," Nano Energy. 10, 71-82 (2014).   DOI
125 H. Liu, C. J. Tay, C. Quan, T. Kobayashi, and C. Lee, "Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power," J. Micro Electromech. S. 20, 1131-1142 (2011)
126 Y. Yang, H. Zhang, Y. Liu, Z.-H. Lin, S. Lee, Z. Lin, C. P. Wong, and Z. L. Wang, "Silicon-based hybrid energy cell for selfpowered electrodegradation and personal electronics," ACS Nano. 7, 2808-2813 (2013)   DOI
127 S.-B. Jeon, D. Kim, G.-W. Yoon, J.-B. Yoon, and Y.-K. Choi, "Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight," Nano Energy. 12, 636-645 (2015)   DOI
128 Y. Fang, J. Tong, Q. Zhong, Q. Chen, J. Zhou, Q. Luo, Y. Zhou, Z. Wang, and B. Hu, "Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies," Nano Energy. 16, 301-309 (2015)   DOI
129 M. Han, X. Chen, B. Yu, and H. Zhang, "Coupling of piezoelectric and triboelectric effects: From theoretical analysis to experimental verification," Adv. Electron. Mater. 1, (2015)
130 J. Zhu, X. Hou, X. Niu, X. Guo, J. Zhang, J. He, T. Guo, X. Chou, C. Xue, and W. Zhang, "The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor," Sens. Actuators A. Phys. 263, 317-325 (2017)   DOI
131 Wu, Y., et al., "Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics." J. Mater. Chem. A. 7, 13347-13355 (2019)   DOI
132 Li, M., et al., "All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator." Nano. Res. 12, 1831-1835 (2019)   DOI
133 Lapčinskis, L., et al., "Hybrid Tribo-Piezo-Electric Nanogenerator with Unprecedented Performance Based on Ferroelectric Composite Contacting Layers." ACS Appl. Energy Mater. 2, 4027-4032 (2019)   DOI
134 S. Roundy, P. K. Wright, and J. Rabaey, "A study of low level vibrations as a power source for wireless sensor nodes," Comp. Commun. 26, 1131-1144   DOI
135 Jirayupat, C., et al.,"Piezoelectric-Induced Triboelectric Hybrid Nanogenerators Based on the ZnO Nanowire Layer Decorated on the Au/polydimethylsiloxane-Al Structure for Enhanced Triboelectric Performance", ACS Appl. Mater. Interfaces. 10, 6433-6440 (2018).   DOI
136 W. Ma, R. Zhu, L. Rufer, Y. Zohar, and M. Wong, "An integrated floating-electrode electric microgenerator," J. Micro Electro Mech. Syst. 16, 29-37 (2007)
137 Q. Yuan, X. Sun, D.-M. Fang, and H. Zhang, Design and microfabrication of integrated magnetic MEMS energy harvester for low frequency application, Paper presented in 16th International Conference on Solid-State Sensors, Actuators and Microsystems in Bijing China, IEEE 2, 1855-58 (2011)
138 T. Galchev, H. Kim, and K. Najafi, "Micro power generator for harvesting low-frequency and nonperiodic vibrations," J. Micro Electro Mech. Syst. 20, 852-866 (2011)
139 S. P. Beeby, M. J. Tudor, and N. White, "Energy harvesting vibration sources for microsystems applications," Meas. Sci. Technol. 17, R175-95 (2006)   DOI
140 Chung, J., et al., "Hand-Driven Gyroscopic Hybrid Nanogenerator for Recharging Portable Devices." Adv. Sci. 5, 1801054 (2018)   DOI
141 H. Kim, S. M. Kim, H. Son, H. Kim, B. Park, J. Ku, J. I. Sohn, K. Im, J. E. Jang, and J.-J. Park, "Enhancement of piezoelectricity via electrostatic effects on a textile platform," Energy Environ. Sci. 5, 8932-8936 (2012)   DOI
142 C. Xue, J. Li, Q. Zhang, Z. Zhang, Z. Hai, L. Gao, R. Feng, J. Tang, J. Liu, and W. Zhang, "A novel arch-shape nanogenerator based on piezoelectric and triboelectric mechanism for mechanical energy harvesting," Nanomaterials. 5, 36-46 (2014)   DOI
143 Q. Nguyen, B. H. Kim, and J. W. Kwon, "Paper-based ZnO nanogenerator using contact electrification and piezoelectric effects," Journal of Microelectromechanical Systems 24, 519-521 (2015)   DOI
144 F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, "Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films," Nano. Lett. 12, 3109-3114 (2012)   DOI
145 Y. Xie, S. Wang, L. Lin, Q. Jing, Z.-H. Lin, S. Niu, Z. Wu, and Z. L. Wang, "Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy," ACS Nano. 7, 7119-7125 (2013)   DOI
146 L. Zhang, B. Zhang, J. Chen, L. Jin, W. Deng, J. Tang, H. Zhang, H. Pan, M. Zhu, and W. Yang, "Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops," Adv. Mater. 28, 1650-1656 (2016)   DOI
147 T. Chen, Y. Xia, W. Liu, H. Liu, L. Sun, and C. Lee, "A hybrid flapping-blade wind energy harvester based on vortex shedding effect," J. Microelectromech. S. 25, 845-847 (2016)   DOI
148 C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G.-T. Hwang, M. Byun, Z. L. Wang, and Y. S. Jung, "Topographically-designed triboelectric nanogenerator via block copolymer selfassembly," Nano. Lett. 14, 7031-7038 (2014)   DOI
149 P. Bai, G. Zhu, Q. Jing, J. Yang, J. Chen, Y. Su, J. Ma, G. Zhang, and Z. L. Wang, "Membrane-Based Self-Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring," Adv. Func. Mater. 24, 5807-5813 (2014)   DOI
150 W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, Q. Jing, X. Cao, and Z. L. Wang, "Harvesting energy from the natural vibration of human walking," ACS Nano. 7, 11317-11324 (2013)   DOI
151 Z. Lin, J. Chen, and J. Yang, "Recent progress in triboelectric nanogenerators as a renewable and sustainable power source," J. Nanomater. (2016).
152 J. Briscoe and S. Dunn, "Piezoelectric nanogenerators-a review of nanostructured piezoelectric energy harvesters," Nano Energy. 14, 15-29 (2015)   DOI
153 Y. Hu and Z. L. Wang, "Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors," Nano Energy. 14, 3-14 (2015)   DOI
154 I. Dakua and N. Afzulpurkar, "Piezoelectric energy generation and harvesting at the nano-scale: materials and devices," Nanomater. Nanotechnol. 3, 21 (2013)   DOI
155 B. Yang, C. Lee, R. K. Kotlanka, J. Xie, and S. P. Lim, "A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations," J. Micromech. Microeng. 20, 065017 (2010)   DOI