Browse > Article
http://dx.doi.org/10.4014/jmb.1911.11053

Modulation of the Metal(loid) Specificity of Whole-Cell Bioreporters by Genetic Engineering of ZntR Metal-Binding Loops  

Kim, Hyojin (Department of Environmental Health Science, Konkuk University)
Jang, Geupil (School of Biological Sciences and Technology, Chonnam National University)
Kim, Bong-Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology)
Yoon, Youngdae (Department of Environmental Health Science, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.5, 2020 , pp. 681-688 More about this Journal
Abstract
Bacterial cell-based biosensors, or whole-cell bioreporters (WCBs), are an alternative tool for the quantification of hazardous materials. Most WCBs share similar working mechanisms. In brief, the recognition of a target by sensing domains induces a biological event, such as changes in protein conformation or gene expression, providing a basis for quantification. WCBs targeting heavy metal(loid)s employ metalloregulators as sensing domains and control the expression of genes in the presence of target metal(loid) ions, but the diversity of targets, specificity, and sensitivity of these WCBs are limited. In this study, we genetically engineered the metal-binding loop (MBL) of ZntR, which controls the znt-operon in Escherichia coli. In the MBL of ZntR, three Cys sites interact with metal ions. Based on the crystal structure of ZntR, MBL sequences were modified by site-directed mutagenesis. As a result, the metal-sensing properties of WCBs differed depending on amino acid sequences and the new selectivity to Cr or Pb was observed. Although there is room for improvement, our results support the use of currently available WCBs as a platform to generate new WCBs to target other environmental pollutants including metal(loid)s.
Keywords
Heavy metals; protein engineering; whole-cell bioreporter; ZntR; metal-binding loop;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Stoyanov JV, Hobman JL, Brown NL. 2001. CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol. Microbiol. 39: 502-512.   DOI
2 Belkin S. 2003. Microbial whole-cell sensing systems of environmental pollutants. 6: 206-212.   DOI
3 Harms H, Wells MC, van der Meer JR. 2006. Whole-cell living biosensors?re they ready for environmental application? Appl. Microbiol. Biotechnol. 70: 273-280.   DOI
4 Leveau JH, Lindow SE. 2002. Bioreporters in microbial ecology. Curr. Opin. Microbiol. 5: 259-265.   DOI
5 Wang B, Barahona M, Buck M. 2013. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens. Bioelectron. 40: 368-376.   DOI
6 Magrisso S, Erel Y, Belkin S. 2008. Microbial reporters of metal bioavailability. Microb. Biotechnol. 1: 320-330.   DOI
7 Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, et al. 1999. ZntR is a Zn (II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 31: 893-902.   DOI
8 Gireesh-Babu P, Chaudhari A. 2012. Development of a broad-spectrum fluorescent heavy metal bacterial biosensor. Mol. Biol. Rep. 39: 11225-11229.   DOI
9 Chen PR, Wasinger EC, Zhao J, Van Der Lelie D, Chen LX, He C. 2007. Spectroscopic insights into lead (II) coordination by the selective lead (II)-binding protein PbrR691. J. Am. Chem. Soc. 129: 12350-12351.   DOI
10 Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, He C. 2005. An exceptionally selective lead (II)-regulatory protein from ralstonia metallidurans: Development of a fluorescent lead (II) Probe. Angew. Chem. Int. Ed. Engl. 44: 2715-2719.   DOI
11 Robbens J, Dardenne F, Devriese L, De Coen W, Blust R. 2010. Escherichia coli as a bioreporter in ecotoxicology. Appl. Microbiol. Bbiotechnol. 88: 1007-1025.   DOI
12 Bereza-Malcolm LT, Mann Gl, Franks AE. 2014. Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synthetic Biol. 4: 535-546.   DOI
13 Fernandez-Lopez R, Ruiz R, de la Cruz F, Moncalian G. 2015. Transcription factor-based biosensors enlightened by the analyte. Front. Microbiol. 6: 648.
14 Mahr R, Frunzke J. 2016. Transcription factor-based biosensors in biotechnology: current state and future prospects. Appl. Microbiol. Bbiotechnol. 100: 79-90.   DOI
15 Yoon Y, Kang Y, Lee W, Oh KC, Jang G, Kim BG. 2018. Modulating the properties of metal-sensing whole-cell bioreporters by interfering with Escherichia coli metal homeostasis. J. Microbiol.Biotechnol. 28: 323-329.   DOI
16 Kang Y, Lee W, Kim S, Jang G, Kim BG, Yoon Y. 2018. Enhancing the copper-sensing capability of Escherichia coli-based whole-cell bioreporters by genetic engineering. Appl. Microbiol. Bbiotechnol. 102: 1513-1521.   DOI
17 Kang Y, Lee W, Jang G, Kim BG, Yoon Y. 2018. Modulating the sensing properties of Escherichia coli-based bioreporters for cadmium and mercury. Appl. Microbiol. Bbiotechnol. 102: 4863-4872.   DOI
18 Yoon Y, Kim S, Chae Y, Kang Y, Lee Y, Jeong SW, et al. 2016. Use of tunable whole-cell bioreporters to assess bioavailable cadmium and remediation performance in soils. PLoS One 11: e0154506.   DOI
19 Petersen C, Moller LB. 2000. Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene 261: 289-298.   DOI
20 Arguello JM, Eren E, Gonzalez-Guerrero M. 2007. The structure and function of heavy metal transport P 1B-ATPases. Biometals 20: 233-248.   DOI
21 Guo M, Du R, Xie Z, He X, Huang K, Luo Y, Xu W. 2019. Using the promoters of MerR family proteins as "Rheostats" to engineer whole-cell heavy metal biosensors with adjustable sensitivity. J. Biol. Eng. 13: 70 doi:10.1186/s13036-019-0202-3   DOI
22 Xu T, Close DM, Sayler GS, Ripp S. 2013. Genetically modified whole-cell bioreporters for environmental assessment. Ecol. Indic. 28: 125-141.   DOI
23 Cerminati S, Soncini FC, Checa SK. 2015. A sensitive whole-cell biosensor for the simultaneous detection of a broad-spectrum of toxic heavy metal ions. Chem. Commun. 51: 5917-5920.   DOI
24 Ibanez MM, Checa SK, Soncini FC. 2015. A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family. J. Bacteriol. 197: 1606-1613.   DOI
25 Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran TV, et al. 2003. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301: 1383-1387.   DOI
26 Huang S, Liu X, Wang D, Chen W, Hu Q, Wei T, et al. 2016. Structural basis for the selective Pb (II) recognition of metalloregulatory protein PbrR691. Inorg. Chem. 55: 12516-12519.   DOI
27 Rensing C, Fan B, Sharma R, Mitra B, Rosen BP. 2000. CopA: an Escherichia coli Cu (I)-translocating P-type ATPase. Proc. Natl Acad. Sci. 97: 652-656.   DOI
28 Khan S, Brocklehurst KR, Jones GW, Morby AP. 2002. The functional analysis of directed amino-acid alterations in ZntR from Escherichia coli. Biochem. Biophys. Res. Commun. 299: 438-445.   DOI