• Title/Summary/Keyword: Biological yield

Search Result 1,103, Processing Time 0.028 seconds

Wastepaper Liquefaction Using Ethylene Glycol and Polyester Preparation from the Liquefied Wastepaper (Ethylene glycol을 사용한 폐지의 액화 및 액화물로부터 polyester 제조)

  • Lee, Dong-Hun;Kim, Chang-Joon;Kim, Sung-Bae
    • KSBB Journal
    • /
    • v.25 no.3
    • /
    • pp.251-256
    • /
    • 2010
  • A novel method to prepare polyester from wastepaper through liquefaction and crosslinking stages was studied. At the first stage, the liquefaction of wastepaper was carried out in the presence of ethylene glycol under acidic conditions. The factors that affect on liquefaction yield were found to be reaction time, temperature, and acid concentration, and their ranges were 60~120 minutes, $150{\sim}170^{\circ}C$, and 2~4%, respectively. The optimum condition was found to be 100 minutes, $160^{\circ}C$, and 3% sulfuric acid concentration, and the liquefaction yield at this condition was 67%. At the second stage, polyester was prepared from the liquefied wastepaper obtained at the optimum liquefaction condition by crosslinking with succinic anhydride. The effect of reaction time and carboxylic group/hydroxyl group ratio on crosslinkage were investigated at conditions covering 30~50 minutes of reaction time and 1.5~2.5 of carboxylic group/hydroxyl group ratio. The crosslinkages of polyester prepared were 80~90%, which were almost same regardless of reaction conditions.

Comparison in Cultural Characteristics According to Pot Diameter and Substrate Weight in Pot Cultivation of Pleurotus ostreatus (느타리버섯 봉지재배시 봉지직경 및 배지량에 따른 생육 특성 비교)

  • Lee, Yun-Hae;Cho, Yun-Jeong;Kim, Hee-Dong
    • The Korean Journal of Mycology
    • /
    • v.30 no.1
    • /
    • pp.18-22
    • /
    • 2002
  • This study was carried to investigate efficient pot diameter and substrate weight in pot cultivation of Pleurotus ostreatus. Cultivating substrate was pine sawdust+beet pulp+cotten seed flour (50 : 30 : 20, v/v). Ranges of pot diameter and substrate weight were $10{\sim}20\;cm\;and\;600{\sim}2,500\;g/pot$, respectively. Smaller pot diameter resulted in longer pot length according to increasing substrate weight, so mycelial growth period and total cultivation period was retarded. Wider pot diameter resulted in a little lower biological efficiency in the same substrate weight. Heavier substrate weight was brought higher yield but lower biological efficiency. Average yield according to pot diameter was decreased at wider than 14 cm during second flush. And average biological efficiency according to substrate weight was lower than 100% at heavier than 1,200 g/pot during second flush. So suitable pot diameter and substrate weight in pot cultivation of Pleurotus ostreatus were estimated $10{\sim}14\;cm\;and\;800{\sim}1,200\;g$, respectively.

Hemicellulose Recovery from Rice Straw using Dilute Sulfuric Acid (묽은 황산을 사용하여 볏짚으로부터 헤미셀룰로오스 회수)

  • Lee, Dong-Hun;Kim, Chang-Joon;Kim, Sung-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.226-230
    • /
    • 2009
  • Rice straw was pretreated using dilute sulfuric acid at reaction conditions covering two levels of reaction temperature (140, $150^{\circ}C$) and five levels of acid concentrations ($1.0{\sim}3.0%wt$). The production and decomposition rates of major components of rice straw indicating glucose, xylose, galactose and arabinose were investigated. The production rate of arabinose and the decomposition rate of xylose were greatest among them. The maximum attainable hemicellulose (xylose+galactose+arabinose) yield was about 80%. High acid concentration appears to favor the maximum yield but high temperature does not. The optimum condition was found to be $140^{\circ}C$, 2.5% and 20 minutes. The maximum glucose yields were almost same, around $16{\sim}18%$, regardless of reaction conditions.

Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum

  • Chandrasekaran, Murugesan;Subramanian, Dharaneedharan;Yoon, Ee;Kwon, Taehoon;Chun, Se-Chul
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.216-227
    • /
    • 2016
  • Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from -2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression.

Lipase-catalyzed Transesterification in Several Reaction Systems: An Application of Room Temperature Ionic Liquids for Bi-phasic Production of n-Butyl Acetate

  • Park Suk-Chan;Chang Woo-Jin;Lee Sang-Mok;Kim Young-Jun;Koo Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.99-102
    • /
    • 2005
  • Organic solvents are widely used in biotransformation systems. There are many efforts to reduce the consumption of organic solvents because of their toxicity to the environment and human health. In recent years, several groups have started to explore novel organic solvents called room temperature ionic liquids in order to substitute conventional organic solvents. In this work, lipase-catalyzed transesterification in several uni- and bi-phasic systems was studied. Two representative hydrophobic ionic liquids based on 1-butyl-3-methylimidazolum coupled with hexafluorophosphate ([BMIM][$PF_6$]) and bis[{trifluoromethylsulfonyl} imide] ([BMIM] [$Tf_{2}N$]) were employed as reaction media for the transesterification of n-butanol. The commercial lipase, Novozym 435, was used for the transesterification reaction with vinyl acetate as an acyl donor. The conversion yield was increased around $10\%$ in a water/[BMIM][$Tf_{2}N$] bi-phasic system compared with that in a water/hexane system. A higher distribution of substrates into the water phase is believed to enhance the conversion yield in a water/[BMIM][$Tf_{2}N$] system. Partition coefficients of the substrates in the water/[BMIM][$Tf_{2}N$] bi-phasic system were higher than three times that found in the water/hexane system, while n-butyl acetate showed a similar distribution in both systems. Thus, RTILs appear to be a promising substitute of organic solvents in some biotransformation systems.

Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis

  • Li, Ling;Lee, Soo Jin;Yuan, Qiu Ping;Im, Wan Taek;Kim, Sun Chang;Han, Nam Soo
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.412-418
    • /
    • 2018
  • Background: Ginsenoside Rg3(S) and compound K (C-K) are pharmacologically active components of ginseng that promote human health and improve quality of life. The aim of this study was to produce Rg3(S) and C-K from ginseng extract using recombinant Lactococcus lactis. Methods: L. lactis subsp. cremoris NZ9000 (L. lactis NZ9000), which harbors ${\beta}$-glucosidase genes (BglPm and BglBX10) from Paenibacillus mucilaginosus and Flavobacterium johnsoniae, respectively, was reacted with ginseng extract (protopanaxadiol-type ginsenoside mixture). Results: Crude enzyme activity of BglBX10 values comprised 0.001 unit/mL and 0.003 unit/mL in uninduced and induced preparations, respectively. When whole cells of L. lactis harboring pNZBglBX10 were treated with ginseng extract, after permeabilization of cells by xylene, Rb1 and Rd were converted into Rg3(S) with a conversion yield of 61%. C-K was also produced by sequential reactions of the permeabilized cells harboring each pNZBgl and pNZBglBX10, resulting in a 70% maximum conversion yield. Conclusion: This study demonstrates that the lactic acid bacteria having specific ${\beta}$-glucosidase activity can be used to enhance the health benefits of Panax ginseng in either fermented foods or bioconversion processes.

Physiological responses to salt stress by native and introduced red algae in New Zealand

  • Gambichler, Vanessa;Zuccarello, Giuseppe C.;Karsten, Ulf
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.137-146
    • /
    • 2021
  • Intertidal macroalgae are regularly exposed to hypo- or hypersaline conditions which are stressful. However, red algae in New Zealand are generally poorly studied in terms of salinity tolerance. Consequently, two native (Bostrychia arbuscula W. H. Harvey [Ceramiales], Champia novae-zelandiae [J. D. Hooker & Harvey] Harvey [Rhodymeniales]) and one introduced red algal taxon (Schizymenia spp. J. Agardh [Nemastomatales]) were exposed for 5 days in a controlled salt stress experiment to investigate photosynthetic activity and osmotic acclimation. The photosynthetic activity of B. arbuscula was not affected by salinity, as reflected in an almost unchanged maximum quantum yield (Fv/Fm). In contrast, the Fv/Fm of C. novae-zelandiae and Schizymenia spp. strongly decreased under hypo- and hypersaline conditions. Treatment with different salinities led to an increase of the total organic osmolyte concentrations with rising salt stress in B. arbuscula and Schizymenia spp. In C. novae-zelandiae the highest organic osmolyte concentrations were recorded at SA 38, followed by declining amounts with further hypersaline exposure. In B. arbuscula, sorbitol was the main organic osmolyte, while the other taxa contained floridoside. The data presented indicate that all three red algal species conspicuously differ in their salt tolerance. The upper intertidal B. arbuscula exhibited a wide salinity tolerance as reflected by unaffected photosynthetic parameters and strong sorbitol accumulation under increasing salinities, and hence can be characterized as euryhaline. In contrast, the introduced Schizymenia spp. and native C. novae-zelandiae, which preferentially occur in the mid-intertidal, showed a narrower salinity tolerance. The species-specific responses reflect their respective vertical positions in the intertidal zone.

Effect of Rice Straw on Methane Production Potential of Cow Manure (우분과 볏짚의 병합 혐기성 소화를 통한 메탄 생산에 대한 고찰)

  • Park, So Yun;Jang, Jeong A;Zhao, Xin;Hong, Jin-Kyung;Jho, Eun Hea
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.71-81
    • /
    • 2022
  • BACKGROUND: Animal manures are one of the biggest sources of greenhouse gases and improper manage-ment of animal wastes contributes to the increasing greenhouse gases in the atmosphere. Con-verting greenhouse gases generated from animal manures to energy is one way of contributing to the net-zero carbon emissions. METHODS AND RESULTS: The potential for methane production from cow manure (CM) was studied by measuring the methane yield using the biochemical methane potential (BMP) test. In particular, the effect of co-digestion using rice straw (RM) on the methane production was studied. The methane yields from the co-digestion of CM and RS were statistically similar to that from the mono-digestion of CM or RS. But there was a synergy effect at the CM:RS ratio of 1:2 and 1:1. This can be attributed to the increased C/N ratio. The changed microbial community structure with the addition of substrates (CM, RS) probably led to the increase in the methane produc-tion. CONCLUSION(S): The methane production potential of the particular CM used in this study was not improved by the addition of RS as a co-substrate. The addition of substrates to the anaerobic sludge promoted the increase in the microbial species having synergetic relationship with methano-gens, and this can partially explain the increase in the methane production with the addition of substrates. Overall, there are needs for further studies to improve the methane yield from CM.

Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives

  • Baeshen, Mohammed N.;Al-Hejin, Ahmed M.;Bora, Roop S.;Ahmed, Mohamed M. M.;Ramadan, Hassan A. I.;Saini, Kulvinder S.;Baeshen, Nabih A.;Redwan, Elrashdy M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.953-962
    • /
    • 2015
  • Escherichia coli is the most preferred microorganism to express heterologous proteins for therapeutic use, as around 30% of the approved therapeutic proteins are currently being produced using it as a host. Owing to its rapid growth, high yield of the product, costeffectiveness, and easy scale-up process, E. coli is an expression host of choice in the biotechnology industry for large-scale production of proteins, particularly non-glycosylated proteins, for therapeutic use. The availability of various E. coli expression vectors and strains, relatively easy protein folding mechanisms, and bioprocess technologies, makes it very attractive for industrial applications. However, the codon usage in E. coli and the absence of post-translational modifications, such as glycosylation, phosphorylation, and proteolytic processing, limit its use for the production of slightly complex recombinant biopharmaceuticals. Several new technological advancements in the E. coli expression system to meet the biotechnology industry requirements have been made, such as novel engineered strains, genetically modifying E. coli to possess capability to glycosylate heterologous proteins and express complex proteins, including full-length glycosylated antibodies. This review summarizes the recent advancements that may further expand the use of the E. coli expression system to produce more complex and also glycosylated proteins for therapeutic use in the future.

Coenzyme $Q_{10}$ Production by Sphingomonas sp. ZUTE03 with Novel Precursors Isolated from Tobacco Waste in a Two-Phase Conversion System

  • Qiu, Lequan;Wang, Weijian;Zhong, Weihong;Zhong, Li;Fang, Jianjun;Li, Xuanzhen;Wu, Shijin;Chen, Jianmeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.494-502
    • /
    • 2011
  • Coenzyme $Q_{10}$ ($CoQ_{10}$) is a widely used supplement in heart diseases treatment or antioxidative dietary. The microbial production of $CoQ_{10}$ was enhanced by addition of solanesol and novel precursors recovered from waste tobacco. The novel precursors were separated by silica gel and identified as ${\alpha}$-linolenic acid (LNA) and butylated hydroxytoluene (BHT) based on the effect on $CoQ_{10}$ production and GC-MS. The effects of novel precursors on $CoQ_{10}$ production by Sphingomonas sp. ZUTE03 were further evaluated in a two-phase conversion system. The precursor's combination of solanesol (70 mg/l) with BHT (30 mg/l) showed the best effect on the improvement of $CoQ_{10}$ yield. A maximal $CoQ_{10}$ productivity (9.5 mg $l^{-1}$ $h^{-1}$) was achieved after 8 h conversion, with a molar conversion rate of 92.6% and 92.4% on BHT and solanesol, respectively. The novel precursors, BHT and LNA in crude extracts from waste tobacco leaves, might become potential candidates for application in the industrial production of $CoQ_{10}$ by microbes.