Browse > Article
http://dx.doi.org/10.4014/jmb.1012.12017

Coenzyme $Q_{10}$ Production by Sphingomonas sp. ZUTE03 with Novel Precursors Isolated from Tobacco Waste in a Two-Phase Conversion System  

Qiu, Lequan (College of Biological and Environmental Engineering, Zhejiang University of Technology)
Wang, Weijian (College of Biological and Environmental Engineering, Zhejiang University of Technology)
Zhong, Weihong (College of Biological and Environmental Engineering, Zhejiang University of Technology)
Zhong, Li (College of Biological and Environmental Engineering, Zhejiang University of Technology)
Fang, Jianjun (College of Biological and Environmental Engineering, Zhejiang University of Technology)
Li, Xuanzhen (College of Biological and Environmental Engineering, Zhejiang University of Technology)
Wu, Shijin (College of Biological and Environmental Engineering, Zhejiang University of Technology)
Chen, Jianmeng (College of Biological and Environmental Engineering, Zhejiang University of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.5, 2011 , pp. 494-502 More about this Journal
Abstract
Coenzyme $Q_{10}$ ($CoQ_{10}$) is a widely used supplement in heart diseases treatment or antioxidative dietary. The microbial production of $CoQ_{10}$ was enhanced by addition of solanesol and novel precursors recovered from waste tobacco. The novel precursors were separated by silica gel and identified as ${\alpha}$-linolenic acid (LNA) and butylated hydroxytoluene (BHT) based on the effect on $CoQ_{10}$ production and GC-MS. The effects of novel precursors on $CoQ_{10}$ production by Sphingomonas sp. ZUTE03 were further evaluated in a two-phase conversion system. The precursor's combination of solanesol (70 mg/l) with BHT (30 mg/l) showed the best effect on the improvement of $CoQ_{10}$ yield. A maximal $CoQ_{10}$ productivity (9.5 mg $l^{-1}$ $h^{-1}$) was achieved after 8 h conversion, with a molar conversion rate of 92.6% and 92.4% on BHT and solanesol, respectively. The novel precursors, BHT and LNA in crude extracts from waste tobacco leaves, might become potential candidates for application in the industrial production of $CoQ_{10}$ by microbes.
Keywords
Coenzyme $Q_{10}$; microbial conversion; tobacco waste; precursor; Sphingomonas sp.; ZUTE03;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Park, Y. C., S. J. Kim, J. H. Choi, W. H. Lee, K. M. Park, K. Mokoto, Y. W. Ryu, and J. H. Seo. 2005. Batch and fed-batch production of coenzyme $Q_{10}$ in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Appl. Microbiol. Biotechnol. 67: 192-196.   DOI   ScienceOn
2 Piotrowska-Cyplik, A., A. P. Olejnik, J. D. Cyplik, and Z. Czarnecki. 2009. The kinetics of nicotine degradation, enzyme activities and genotoxic potential in the characterization of tobacco waste composting. Bioresour. Technol. 100: 5037-5044.   DOI   ScienceOn
3 Sakato, K., H. Tanaka, S. Shibata, and Y. Kuratsu. 1992. Agitation aeration studies on coenzyme-Q10 production using Rhodopseudomonas sphaeroides. Biotechnol. Appl. Biochem. 16: 19-28.
4 Seo, M. J., E. M. Im, J. Y. Nam, and S. O. Kim. 2007. Increase of CoQ10 production level by the coexpression of decaprenyl diphosphate synthase and 1-deoxy-D-xylulose 5-phosphate synthase isolated from Rhizobium radiobacter ATCC 4718 in recombinant Escherichia coli. J. Microbiol. Biotechnol. 17: 1045-1048.
5 Ha, S. J., S. Y. Kim, J. H. Seo, D. K. Oh, and J. K. Lee. 2007. Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q(10) production by Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol. 74: 974-980.   DOI   ScienceOn
6 Ha, S. J., S. Y. Kim, J. H. Seo, W. I. Sim, H. J. Moon, and J. K. Lee. 2008. Lactate increases coenzyme Q(10) production by Agrobacterium tumefaciens. World J. Microbiol. Biotechnol. 24: 887-890.   DOI   ScienceOn
7 Jiang, S. Y., L. J. Yu, X. Xiong, X. L. Shen, and Y. Jian. 2008. Optimal supply of precursors for $CoQ_{10}$ production by Rhodopseudomonas palustris. Prog. Modern Biomed. 8: 845- 850.
8 Jeya, M., H. J. Moon, I. W. Lee, and J. K. Lee. 2010. Current state of coenzyme Q(10) production and its applications. Appl. Microbiol. Biotechnol. 85: 1653-1663.   DOI   ScienceOn
9 Katagiri, T. 1996. Appraisal of coenzyme $Q_{10}$ as a drug for the management of cardiac failure. Kiso To Rinshyo 30: 1559-1567.
10 Ken, S., W. Masanori, S. Yoshito, I. Akihiro, and N. Napavarn. 2005. Applications of photosynthetic bacteria for medical fields. J. Biosci. Bioeng. 100: 481-488.   DOI   ScienceOn
11 Kim, S. J., M. D. Kim, J. H. Choi, S. Y. Kim, Y. W. Ryu, and J. H. Seo. 2006. Amplification of 1-deoxy-D-xyluose 5-phosphate (DXP) synthase level increases coenzyme production in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 72: 982-985.   DOI   ScienceOn
12 Lipshutz, B. H., P. Mollard, S. S. Pfeiffer, and W. Chrisman. 2002. A short, highly efficient synthesis of coenzyme $Q_{10}$. J. Am. Chem. Soc. 124: 14282-14283.   DOI   ScienceOn
13 Machado, P. A., H. Fu, R. J. Kratochvil, Y. H. Yuan, T. S. Hahm, C. M. Sabliov, C. I. Wei, and Y. M. Lo. 2010. Recovery of solanesol from tobacco as a value-added byproduct for alternative applications. Bioresour. Technol. 101: 1091-1096.   DOI   ScienceOn
14 Negishi, E., S. Y. Lou, C. Xu, and S. Huo. 2002. A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of coenzyme $Q_{10}$. Org. Lett. 4: 261-264.   DOI   ScienceOn
15 Choi, J. H., Y. W. Ryu, and J. H. Seo. 2005. Biotechnological production and applications of coenzyme $Q_{10}$. Appl. Microbiol. Biotechnol. 68: 9-15.   DOI   ScienceOn
16 Okada, K., T. Kainou, K. Tanaka, T. Nakagawa, H. Matsuda, and M. Kawamukai. 1998. Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans. Eur. J. Biochem. 255: 52-59.   DOI   ScienceOn
17 Bule, M. V. and R. S. Singhal. 2009. Use of carrot juice and tomato juice as natural precursors for enhanced production of ubiquinone-10 by Pseudomonas diminuta NCIM 2865. Food Chem. 116: 302-305.   DOI   ScienceOn
18 Cheng, B., Q. P. Yuan, X. X. Sun, and W. J. Li. 2010. Enhanced production of coenzyme Q10 by over expressing HMG-CoA reductase and induction with arachidonic acid in Schizosaccharomyces pombe. Appl. Biochem. Biotechnol. 160: 523-531.   DOI   ScienceOn
19 Gu, S. B., J. M. Yao, Q. P. Yuan, P. J. Xue, Z. M. Zheng, and Z. L. Yu. 2006. Kinetics of Agrobacterium tumefaciens ubiquinone-10 batch production. Process Biochem. 41: 1908- 1912.   DOI   ScienceOn
20 Corinne, P. C., M. B. Adam, and J. M. Vincent. 2007. Current prospects for the production of coenzyme $Q_{10}$ in microbes. Trends Biotechnol. 25: 514-521.   DOI   ScienceOn
21 Gu, S. B., J. M. Yao, Q. P. Yuan, P. J. Xue, Z. M. Zheng, L. Wang, and Z. L. Yu. 2006. A novel approach for improving the productivity of ubiquinone-10 producing strain by low-energy ion beam irradiation. Appl. Microbiol. Biotechnol. 72: 456-461.   DOI   ScienceOn
22 Zahiri, H. S., S. H. Yoon, J. D. Keasling, S. H. Lee, K. S. Won, S. C. Yoon, and Y. C. Shin. 2006. Coenzyme$Q_{10}$ production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metab. Eng. 8: 406-416.   DOI   ScienceOn
23 Ha, S. J., S. Y. Kim, J. H. Seo, H. J. Moon, K. M. Lee, and J. K. Lee. 2007. Controlling the sucrose concentration increases coenzyme Q10 production in fed-batch culture of Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol. 76: 109-116.   DOI   ScienceOn
24 Seo, M. J., E. M. Im, J. H. Hur, J. Y. Nam, C. G. Hyun, Y. R. Pyun, and S. O. Kim. 2006. Production of coenzyme Q10 by recombinant E. coli harboring the decaprenyl diphosphate synthase gene from Sinorhizobium meliloti, J. Microbiol. Biotechnol. 16: 933-938
25 Seo, M. J. and S. O. Kim. 2010. Effect of limited oxygen supply on coenzyme Q10 production and its relation to limited electron transfer and oxidative stress in Rhizobium radiobacter T6102. J. Microbiol. Biotechnol. 20: 346-349
26 Tanaka, A., S. Shimizu, and S. Fukui. 1972. Fermentative production of ubiquinones from alknes. Patent JP 7220396.
27 Tian, Y. T., T. L. Yue, Y. H. Yuan, P. K. Soma, P. D. Williams, P. A. Machado, et al. 2010. Tobacco biomass hydrolysate enhances coenzyme $Q_{10}$ production using photosynthetic Rhodospirillum rubrum. Bioresour. Technol. 101: 7877-7881.   DOI   ScienceOn
28 Wang, Z. F., Y. L. Huang, J. F. Rathman, and S. T. Yang. 2002. Lecithin-enhanced biotransformation of cholesterol to androsta- 1,4-diene-3,17-dione and androsta-4-ene-3,17-dione. J. Chem. Technol. Biotechnol. 77: 1349-1357.   DOI   ScienceOn
29 Yajima, K., T. Kato, A. Kanda, S. Kitamura, and Y. Ueda. 2003. Process for producing coenzyme$Q_{10}$Patent WO 2003 056024.
30 Zhang, D. W., Z. Li, F. H. Wang, B. Shrestha, P. F. Tian, and T. W. Tan. 2007. Expression of various genes to enhance ubiquinone metabolic pathway in Agrobacterium tumefaciens. Enzyme Microb. Technol. 41: 772-779.   DOI   ScienceOn
31 Zhang, D. W., B. Shrestha, Z. P. Li, and T. W. Tan. 2007. Ubiquinone-10 production using Agrobacterium tumefaciens dps gene in Escherichia coli by coexpression system. Mol. Biotechnol. 35: 1-14.   DOI   ScienceOn
32 Zhong, W. H., J. J. Fang, H. G. Liu, and X. Wang. 2009. Enhanced production of $CoQ_{10}$ by newly isolated Sphingomonas sp. ZUTE03 with a coupled fermentation-extraction process. J. Ind. Microbiol. Biotechnol. 36: 687-693.   DOI   ScienceOn
33 Zhong, W. H., W. J. Wang, Z. Y. Kong, B. Wu, L. Zhong, X. Z. Li, J. Yu, and F. M. Zhang. 2011. Coenzyme Q10 production directly from precursors by free and gel entrapped Sphingomonas sp. ZUTE03 in a water-organic solvent, two-phase conversion system. Appl. Microbiol. Biotechnol. 89: 293-302.   DOI   ScienceOn
34 Zhong, W. H., C. J. Zhu, M. Shu, K. D. Sun, L. Zhao, C. Wang, Z. J. Ye, and J. M. Chen. 2010. Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD. Bioresour. Technol. 101: 6935-6941.   DOI   ScienceOn