Wastepaper Liquefaction Using Ethylene Glycol and Polyester Preparation from the Liquefied Wastepaper

Ethylene glycol을 사용한 폐지의 액화 및 액화물로부터 polyester 제조

  • Lee, Dong-Hun (Department of Chemical & Biological Engineering and ERI, Gyeongsang National University) ;
  • Kim, Chang-Joon (Department of Chemical & Biological Engineering and ERI, Gyeongsang National University) ;
  • Kim, Sung-Bae (Department of Chemical & Biological Engineering and ERI, Gyeongsang National University)
  • 이동헌 (경상대학교 공과대학 생명화학공학과 및 공학연구원) ;
  • 김창준 (경상대학교 공과대학 생명화학공학과 및 공학연구원) ;
  • 김성배 (경상대학교 공과대학 생명화학공학과 및 공학연구원)
  • Received : 2010.03.18
  • Accepted : 2010.06.20
  • Published : 2010.06.30

Abstract

A novel method to prepare polyester from wastepaper through liquefaction and crosslinking stages was studied. At the first stage, the liquefaction of wastepaper was carried out in the presence of ethylene glycol under acidic conditions. The factors that affect on liquefaction yield were found to be reaction time, temperature, and acid concentration, and their ranges were 60~120 minutes, $150{\sim}170^{\circ}C$, and 2~4%, respectively. The optimum condition was found to be 100 minutes, $160^{\circ}C$, and 3% sulfuric acid concentration, and the liquefaction yield at this condition was 67%. At the second stage, polyester was prepared from the liquefied wastepaper obtained at the optimum liquefaction condition by crosslinking with succinic anhydride. The effect of reaction time and carboxylic group/hydroxyl group ratio on crosslinkage were investigated at conditions covering 30~50 minutes of reaction time and 1.5~2.5 of carboxylic group/hydroxyl group ratio. The crosslinkages of polyester prepared were 80~90%, which were almost same regardless of reaction conditions.

e-ma폐지를 사용하여 액화와 가교단계를 거쳐 polyester를 제조하였다. 첫 번째 단계에서는 EG를 사용하여 산 촉매하에서 폐지를 액화하였다. 폐지의 액화수율에 영향을 미치는 인자는 반응시간, 반응온도, 그리고 촉매농도이고 각각 60~120분, $150{\sim}170^{\circ}C$, 그리고 2~4% 범위 내에서 실험하였다. 최적조건은 100분, $160^{\circ}C$, 3%이었고 이 조건에서 액화수율은 67%이었다. 두 번째 단계에서는 최적조건에서 얻어진 폐지 액화물을 succinic anhydride와 반응시켜 polyester를 제조하였다. 반응시간과 carboxyl기/수산기의 비가 각각 35~50분, 1.5~2.5의 범위 내에서 가교도에 미치는 영향을 조사하였다. 제조된 polyester의 가교도는 80~90%로 반응조건에 따라 큰 차이가 없었다.

Keywords

References

  1. Wyman, C. E., B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladish, and Y. Y. Lee (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96: 1959-1966. https://doi.org/10.1016/j.biortech.2005.01.010
  2. Shiraishi, N., S. Onodera, M. Ohtani, and T. Masumoto (1985) Dissolution of etherified or esterified wood into polyhydric alcohols or bisphenol A and their application in preparing wooden polymeric materials. Mokuzai Gakkaishi 31: 418-420.
  3. Yao, Y., M. Yoshioka, and N. Shiraishi (1993) Combined liquefaction of wood and starch in a polyethylene glycol/glycerin blended solvent. Mokuzai Gakkaishi 39: 930-938.
  4. Wang, Y., J. Wu, Y. Wan, H. Lei, F. Yu, P. Chen, X. Lin, Y. Liu, and R. Ruan (2009) Liquefaction of corn stover using industrial biodiesel glycerol. Int. J. Agric. Biol. Eng. 2: 32-40.
  5. Shin, H. J., C.-J. Kim, and S. B. Kim (2009) Kinetic study of recycled newspaper liquefaction in polyol solvent. Biotechnol. Bioprocess Eng. 14: 349-353. https://doi.org/10.1007/s12257-008-0246-6
  6. Yamada, T. and H. Ono (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresour. Technol. 70: 61-67. https://doi.org/10.1016/S0960-8524(99)00008-5
  7. Yu, F., R. Ruan, X. Lin, Y. Liu, R. Fu, Y. Li, P. Chen, and Y. Gao (2006) Reaction kinetics of stover liquefaction in recycled stover polyol. Appl. Biochem. Biotechnol. 130: 563-573. https://doi.org/10.1385/ABAB:130:1:563
  8. Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura, and H. Ono (2001) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresour. Technol. 77: 33-40. https://doi.org/10.1016/S0960-8524(00)00136-X
  9. Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura, and H. Ono (2001) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood. Biomass Bioenergy 21: 381-390. https://doi.org/10.1016/S0961-9534(01)00041-1
  10. Lee, S.-H, Y. Teramoto, and N. Shiraishi (2002) Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. J. Appl. Polymer Sci. 83: 1482-1489. https://doi.org/10.1002/app.10039
  11. Xie, T. and F. Chen (2005) Fast liquefaction of bagasse in ethylene carbonate and preparation of epoxy resin from the liquefied product. J. Appl. Polymer Sci. 98: 1961-1968. https://doi.org/10.1002/app.22370
  12. Yu, F., Y. Liu, X. Pan, X. Lin, C. Liu, P. Chen, R. Ruan (2006) Liquefaction of corn stover and preparation of polyester from liquefied polyol. Appl. Biochem. Biotechnol. 130: 574-585. https://doi.org/10.1385/ABAB:130:1:574
  13. National Renewable Energy Laboratory, Standard Biomass Analytical Procedures. http://www.nrel.gov/ biomass/analytical_procedures.html.(2008).
  14. Kim, S. B. and Y. Y. Lee (1996) Fractionation of herbaceous biomass by ammonia-hydrogen peroxide percolation treatment. Appl. Biochem. Biotechnol. 57/58: 147-156. https://doi.org/10.1007/BF02941695