Browse > Article
http://dx.doi.org/10.4014/jmb.1412.12079

Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives  

Baeshen, Mohammed N. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University)
Al-Hejin, Ahmed M. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University)
Bora, Roop S. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University)
Ahmed, Mohamed M. M. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University)
Ramadan, Hassan A. I. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University)
Saini, Kulvinder S. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University)
Baeshen, Nabih A. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University)
Redwan, Elrashdy M. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.7, 2015 , pp. 953-962 More about this Journal
Abstract
Escherichia coli is the most preferred microorganism to express heterologous proteins for therapeutic use, as around 30% of the approved therapeutic proteins are currently being produced using it as a host. Owing to its rapid growth, high yield of the product, costeffectiveness, and easy scale-up process, E. coli is an expression host of choice in the biotechnology industry for large-scale production of proteins, particularly non-glycosylated proteins, for therapeutic use. The availability of various E. coli expression vectors and strains, relatively easy protein folding mechanisms, and bioprocess technologies, makes it very attractive for industrial applications. However, the codon usage in E. coli and the absence of post-translational modifications, such as glycosylation, phosphorylation, and proteolytic processing, limit its use for the production of slightly complex recombinant biopharmaceuticals. Several new technological advancements in the E. coli expression system to meet the biotechnology industry requirements have been made, such as novel engineered strains, genetically modifying E. coli to possess capability to glycosylate heterologous proteins and express complex proteins, including full-length glycosylated antibodies. This review summarizes the recent advancements that may further expand the use of the E. coli expression system to produce more complex and also glycosylated proteins for therapeutic use in the future.
Keywords
E. coli; optimized protein production; biopharmaceuticals; codon usage; molecular chaperones;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yim S, Jeong K, Chang H, Lee S. 2001. High-level secretory production of human granulocytes-colony stimulating factor by fed-batch culture of recombinant Escherichia coli. Bioprocess Biosyst. Eng. 24: 249-254.   DOI
2 Valente CA, Prazeres DMF, Cabral JMS, Monteriro GA. 2004. Translation feature of human alpha 2b interferon production in Escherichia coli. Appl. Environ. Microbiol. 70: 5033-5036.   DOI
3 Vasina JA, Baneyx F. 1997. Expression of aggregation prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoters systems. Protein Expr. Purif. 9: 211-218.   DOI
4 Voulgaridou GP, Mantso T, Chlichlia K, Panayiotidis MI, Pappa A. 2013. Efficient E. coli expression strategies for production of soluble human crystallin ALDH3A1. Plos One 8: e56582.   DOI
5 Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, et al. 2002. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298: 1790-1793.   DOI
6 Walsh G, Jefferis R. 2006. Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24: 1241-1252.   DOI
7 Wetter M, Kowarik M, Steffen M, Carranza P, Corradin G, Wacker M. 2013. Engineering, conjugation, and immunogenicity assessment of Escherichia coli O121 O antigen for its potential use as a typhoid vaccine component. Glycoconj. J. 30: 511-522.   DOI
8 Yan X, Hu S, Guan YX, Yao SJ. 2012. Coexpres sion of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferongamma in Escherichia coli. Appl. Microbiol. Biotechnol. 93: 1065-1074.   DOI
9 Yarian C, Marszalek M, Sochacka E, Malkiewicz A, Guenther R, Miskiewicz A, Agris PF. 2000. Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNALysUUU species. Biochemistry 39: 13390- 13395.   DOI
10 Sørensen HP, Laursen BS, Mortensen KK, Sperling-Petersen HU. 2002. Bacterial translation initiation — mechanism and regulation. Recent Res. Dev. Biophys. Biochem. 2: 243-270.
11 Sørensen HP, Sperling-Petersen HU, Mortensen KK. 2003. A favorable solubility partner for the recombinant expression of streptavidin. Protein Expr. Purif. 32: 252-259.   DOI
12 Stenstrom C, Jin H, Major L, Tate W, Isaksson LA. 2001. Codon bias at the 3’-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli. Gene 263: 273-284.   DOI
13 Sørensen HP, Sperling-Petersen HU, Mortensen KK. 2003. Dialysis strategies for protein refolding: preparative streptavidin production. Protein Expr. Purif. 31: 149-154.   DOI
14 Sorensen HP, Mortensen KK. 2005. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb. Cell Fact. 4: 1.   DOI
15 Sprengart ML, Porter AG. 1997. Functional importance of RNA interactions in selection of translation initiation codons. Mol. Microbiol. 24: 19-28.   DOI
16 Tegel H, Tourle S, Ottosson J, Persson A. 2010. Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta (DE3). Protein Expr. Purif. 69: 159-167.   DOI
17 Terra VS, Mills DC, Yates LE, Abouelhadid S, Cuccui J, Wren BW. 2012. Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J. Med. Microbiol. 61: 919-926.   DOI
18 Valderrama-Rincon JD, Fisher AC, Merritt JH, Fan YY, Reading CA, Chhiba K, et al. 2012. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat. Chem. Biol. 8: 434-436.   DOI
19 Redwan EM, Matar SM, El-Aziz GA, Serour EA. 2008. Synthesis of the human insulin gene: protein expression, scaling up and bioactivity. Prep. Biochem. Biotechnol. 38: 24-39.   DOI
20 Ringquist S, Shinedling S, Barrick D, Green L, Binkley J, Stormo GD, Gold L. 1992. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol. Microbiol. 6: 1219-1229.   DOI
21 Sanchez JC, Padron G, Santana H, Herrera L. 1998. Elimination of an HuIFN alpha 2b readthrough species, produced in Escherichia coli, by replacing its natural translation stop signal. J. Biotechnol. 63: 179-186.   DOI
22 Rodriguez V, Asenjo JA, Andrews BA. 2014. Design and implementation of a high yield production system for recombinant expression of peptides. Microb. Cell Fact. 13: 65.   DOI
23 Ronez F, Arbault P, Guzzo J. 2012. Co-expression of the small heat shock protein, Lo18, with β-glucosidase in Escherichia coli improves solubilization and reveals various associations with overproduced heterologous protein, GroEL/ES. Biotechnol. Lett. 34: 935-939.   DOI
24 Sahdev S, Khattar SK, Saini KS. 2008. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol. Cell. Biochem. 307: 249-264.   DOI
25 Seetharam R, Heeren RA, Wong EY, Braford SR, Klein BK, Aykent S, et al. 1988. Mistranslation in IGF-1 during overexpression of the protein in Escherichia coli using a synthetic gene containing low frequency codons. Biochem. Biophys. Res. Commun. 155: 518-523.   DOI
26 Seo SW, Yang JS, Cho HS, Yang J, Kim SC, Park JM, et al. 2014. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels. Sci. Rep. 4: 4515.
27 Overton TW. 2014 Recombinant protein production in bacterial hosts. Drug Discov. Today 19: 590-601.   DOI
28 Ow DSW, Lim DYX, Nissom PM, Camattari A, Wong VVT. 2010. Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1.3 production. Microb. Cell Fact. 9: 22.   DOI
29 Park YS, Seo SW, Hwang S, Chu HS, Ahn JH, Kim TW, et al. 2007. Design of 5’-untranslated region variants for tunable expression in Escherichia coli. Biochem. Biophys. Res. Commun. 356: 136-141.   DOI
30 Papaneophytou CP, Kontopidis G. 2014. Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein Expr. Purif. 94: 22-32.   DOI
31 Parker J. 1989. Errors and alternatives in reading the universal genetics code. Microbiol. Rev. 53: 273-298.
32 Poole ES, Brown CM, Tate WP. 1995. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 14: 151-158.
33 Reilly DE, Yansura DG. 2010. Production of monoclonal antibodies in E. coli, pp295-308. In Shire SJ, Gombotz W, Bechtold-Peters K, Andya J. (eds). Current Trends in Monoclonal Antibodies Development and Manufacturing. Springer, New York.
34 Redwan EM. 2006. Optimal gene sequence for optimal protein expression in Escherichia coli: principle requirements. Arab. J. Biotechnol. 11: 493-510.
35 Redwan EM. 2007. Cumulative updating of approved biopharmaceuticals. Hum. Antibodies 16: 137-158.
36 McNulty DE, Claffee BA, Huddleston MJ, Kane JF. 2003. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr. Purif. 27: 365-374.   DOI
37 Merritt JH, Ollis AA, Fisher AC, DeLisa MP. 2013. Glycansby-design: engineering bacteria for the biosynthesis of complex glycans and glycoconjugates. Biotechnol. Bioeng. 110: 1550-1564.   DOI
38 Nausch H, Huckauf J, Koslowski R, Meyer U, Broer I, Mikschofsky H. 2013. Recombinant production of human interleukin 6 in Escherichia coli. PLoS One 8: e54933.   DOI
39 Mohammed Y, El-Baky NA, Redwan NA, Redwan EM. 2012. Expression of human interferon-α8 synthetic gene under P(BAD) promoter. Biochemistry (Mosc.) 77: 1210-1219.   DOI
40 Mohammed Y, El-Bakym NA, Redwan EM. 2012. Expression, purification, and characterization of recombinant human consensus interferon-alpha in Escherichia coli under λP(L) promoter. Prep. Biochem. Biotechnol. 42: 426-447.   DOI
41 Nelson AL, Reichert JM. 2009. Development trends for therapeutic antibody fragments. Nat. Biotechnol. 27: 331-337.   DOI
42 Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF. 1987. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48: 297-310.   DOI
43 Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T. 1998. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64: 1694-1699.
44 Ollis AA, Zhang S, Fisher AC, DeLisa MP. 2014. Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity. Nat. Chem. Biol. 10: 816-822.   DOI
45 Kolaj O, Spada S , Robin S, Wall JG. 2009. Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb. Cell Fact. 8: 9.   DOI
46 Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU. 2005. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69: 101-123.   DOI
47 Linder P, Daugeron M-C. 2000. Are DEAD-box proteins becoming respectable helicases? Nat. Struct. Biol. 7: 97-99.   DOI
48 Lebendiker M, Danieli T. 2014. Production of prone-toaggregate proteins. FEBS Lett. 588: 236-246.   DOI
49 Lee YJ, Lee DH, Jeong KJ. 2014. Enhanced production of human full-length immunoglobulin G1 in the periplasm of Escherichia coli. Appl. Microbiol. Biotechnol. 98: 1237-1246.   DOI
50 Levy R, Weiss R, Chen G, Iverson BL, Georgiou G. 2001. Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr. Purif. 23: 338-347.   DOI
51 Maeng BH, Nam DH, Kim YH. 2011. Coexpression of molecular chaperones to enhance functional expression of anti-BNPscFv in the cytoplasm of Escherichia coli for the detection of B-type natriuretic peptide. World J. Microbiol. Biotechnol. 27: 1391-1398.   DOI
52 Makrides SC. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512-538.
53 Mavrangelos C, Thiel M, Adamson PJ, Millard DJ, Nobbs S, Zola H, Nicholson IC. 2001. Increas ed yield a nd activity of soluble single-chain antibody fragments by combining highlevel expression and the Skp periplasmic chaperonin. Protein Expr. Purif. 23: 289-295.   DOI
54 Jeong W, Shin HC. 1998. Supply of the ArgU gene product allows high-level expression of recombinant human interferonalpha-2a in Escherichia coli. Biotechnol. Lett. 20: 19-22.   DOI
55 Jhamb K, Sahoo DK. 2012. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour. Technol. 123: 135-143.   DOI
56 Kane JF. 1995. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 494-500.   DOI
57 Joly JC, Leung WS, Swartz JR. 1998. Overexpression of Escherichia coli oxidoreductases increases recombinant insulinlike growth factor-I accumulation. Proc. Natl. Acad. Sci. USA 95: 2773-2777.   DOI
58 Jung ST, Kang TH, Kelton W, Georgiou G. 2011. Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr. Opin. Biotechnol. 22: 858-867.   DOI
59 Kane JF, Violand BN, Curran DF, Staten NR, Duffin KL, Bogosian G. 1992. Novel in-frame two codon translational hop during synthesis of bovine placental lactogen in a recombinant strain of Escherichia coli. Nucleic Acids Res. 20: 6707-6712.   DOI
60 Khattar SK, Kundu PK, Gulati P, Singh V, Bughani U, Bajpaim M, Saini KS 2007. Optimization and enhanced soluble production of biologically active recombinant human p38 mitogen-activated-protein kinase (MAPK) in Escherichia coli. Protein Peptide Lett. 14: 756-760.   DOI
61 Kim R, Sandler SJ, Goldman S, Yokota H, Clark AJ, Kim SH. 1998. Overexpression of archaeal proteins in Escherichia coli. Biotechnol. Lett. 20: 207-210.   DOI
62 Ferrer-Miralles N, Villaverde A. 2013. Bacterial cell factories for recombinant protein production; expanding the catalogue. Microb. Cell Fact. 12: 113.   DOI
63 Fisher AC, Haitjema CH, Guarino C, Celik E, Endicott CE, Reading CA, et al. 2011. Production of secretory and extracellular N-linked glycoproteins in Escherichia coli. Appl. Environ. Microbiol. 77: 871-881.   DOI
64 Iost I, Dreyfus M. 1994. mRNAs can be stabilized by DEAD-box proteins. Nature 372: 193-196.   DOI
65 Folwarczna J, Moravec T, Plchova H, Hoffmeisterova H, Cerovska N. 2012. Efficient expression of human papillomavirus 16 E7 oncoprotein fused to C-terminus of tobacco mosaic virus (TMV) coat protein using molecular chaperones in Escherichia coli. Protein Expr. Purif. 85: 152-157.   DOI
66 Guzzo J. 2012. Biotechnical applications of small heat shock proteins from bacteria. Int. J. Biochem. Cell Biol. 44: 1698-1705.   DOI
67 Ihssen J, Kowarik M, Dilettoso S, Tanner C, Wacker M, Thöny-Meyer L. 2010. Production of glycoprotein vaccines in Escherichia coli. Microb. Cell Fact. 11: 9: 61.   DOI
68 Iost I, Bizebard T, Dreyfus M. 2013. Functions of DEAD-box proteins in bacteria: current knowledge and pending questions. Biochim. Biophys. Acta 1829: 866-877.   DOI
69 Jensen EB, Carlsen S. 1990. Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, acetate and salts. Biotechnol. Bioeng. 36: 1-11.   DOI
70 Jenkins N. 2007. Modifications of therapeutic proteins: challenges and prospects. Cytotechnology 53: 121-125.   DOI
71 Cuccui J, Wren B. 2015. Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanised glycoproteins. J. Pharm. Pharmacol. 67: 338-350.   DOI
72 Cui SS, Lin XZ, Shen JH. 2011. Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expr. Purif. 77: 166-172.   DOI
73 El-Baky NA, Redwan EM. 2015. Therapeutic alpha-interferons protein: structure, production, and biosimilar. Prep. Biochem. Biotechnol. 45: 109-127.   DOI
74 de Marco A. 2007. Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat. Protoc. 2: 2632-2639.   DOI
75 De Smit MH, van Duin, J. 1990. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc. Natl. Acad. Sci. USA 87: 7668-7672.   DOI
76 Dieci G, Bottarelli L, Ballabeni A, Ottonello S. 2000. tRNA assisted overproduction of eukaryotic ribosomal proteins. Protein Expr. Purif. 18: 346-354.   DOI
77 Etchegaray JP, Inouye M. 1999. Translational enhancement by an element example of molecular misreading in Alzheimer’s disease. Trends Neurosci. 21: 331-335.
78 Fahnert B, Lilie H, Neubauer P. 2004. Inclusion bodies: formation and utilization. Adv. Biochem. Eng. Biotechnol. 89: 93-142.
79 Feng Y, Xu Q, Yang T, Sun E, Li J, Shi D, Wu D. 2014. A novel self-cleavage system for production of soluble recombinant protein in Escherichia coli. Protein Expr. Purif. 99: 64-69.   DOI
80 Arya R, Sabir JSM, Bora RS, Saini KS. 2015. Optimization of culture parameters and novel strategies to improve protein solubility. In Insoluble Proteins: Methods and Protocols. Methods in Molecular Biology series, edited by Dr. Elena Garcia Fruitos, Vol. 1258, Chapter 3. Pages 45-63; Springer Science and Business Media, New York, USA.
81 Betiku E. 2006. Molecular chaperones involved in heterologous protein folding in Escherichia coli. Biotechnol. Mol. Biol. 1: 66-75.
82 Chen R. 2012. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 30: 1102-1107.   DOI
83 Brinkman U, Mattes RE, Buckel P. 1989. High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 85: 109-114.   DOI
84 Calderone TL, Stevens RD, Oas TG. 1996. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J. Mol. Biol. 262: 407-412.   DOI
85 Carrio MM, Villaverde A. 2003. Role of molecular chaperones in inclusion body formation. FEBS Lett. 537: 215-221.   DOI
86 Choi JH, Lee SY. 2004. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64: 625-635.   DOI