• Title/Summary/Keyword: Biological screening methods

Search Result 121, Processing Time 0.037 seconds

Evaluation of Advanced Structure-Based Virtual Screening Methods for Computer-Aided Drug Discovery

  • Lee, Hui-Sun;Choi, Ji-Won;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2007
  • Computational virtual screening has become an essential platform of drug discovery for the efficient identification of active candidates. Moleculardocking, a key technology of receptor-centric virtual screening, is commonly used to predict the binding affinities of chemical compounds on target receptors. Despite the advancement and extensive application of these methods, substantial improvement is still required to increase their accuracy and time-efficiency. Here, we evaluate several advanced structure-based virtual screening approaches for elucidating the rank-order activity of chemical libraries, and the quantitative structureactivity relationship (QSAR). Our results show that the ensemble-average free energy estimation, including implicit solvation energy terms, significantly improves the hit enrichment of the virtual screening. We also demonstrate that the assignment of quantum mechanical-polarized (QM-polarized) partial charges to docked ligands contributes to the reproduction of the crystal pose of ligands in the docking and scoring procedure.

Cyclic Peptides as Therapeutic Agents and Biochemical Tools

  • Joo, Sang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • There are many cyclic peptides with diverse biological activities, such as antibacterial activity, immunosuppressive activity, and anti-tumor activity, and so on. Encouraged by natural cyclic peptides with biological activity, efforts have been made to develop cyclic peptides with both genetic and synthetic methods. The genetic methods include phage display, intein-based cyclic peptides, and mRNA display. The synthetic methods involve individual synthesis, parallel synthesis, as well as split-and-pool synthesis. Recent development of cyclic peptide library based on split-and-pool synthesis allows on-bead screening, in-solution screening, and microarray screening of cyclic peptides for biological activity. Cyclic peptides will be useful as receptor agonist/antagonist, RNA binding molecule, enzyme inhibitor and so on, and more cyclic peptides will emerge as therapeutic agents and biochemical tools.

Screening Methods for the Identification of Irradiated Foods

  • Shahbaz, Hafiz Muhammad;Ahn, Jae-Jun;Akram, Kashif;Kwon, Joong-Ho
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • The exposure of food to ionizing radiation has been recognized as a safe and effective mode of food preservation in more than 55 countries. The benefits include eradication of insect pests, inactivation of food pathogens, extension of shelf-life, and improvement in food hygiene. Regulatory authorities around the world have emphasized the implementation of various national and international regulations to facilitate trade and development of consumers' confidence in purchasing irradiated foods. Therefore, the need for reliable irradiation detection methods has increased to enforce these regulations. At present, a number of promising analytical approaches have been developed and evaluated. Moreover, about 10 European Standards have been adopted as General CODEX Alimentarius methods for the detection of irradiated foodstuffs. However, most of these methods demand relatively expensive equipment and prolonged sample preparation. Therefore, simple and cost-effective approaches would be advantageous for rapid screening of foodstuffs. The suspected samples need to be analyzed further with more validated techniques to confirm the screening results. In this review, existing screening methods (i.e. physical, chemical, and biological) for the identification of irradiated foods have been outlined along with their principles, scopes and limitations.

  • PDF

EMPAS: Electron Microscopy Screening for Endogenous Protein Architectures

  • Kim, Gijeong;Jang, Seongmin;Lee, Eunhye;Song, Ji-Joon
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.804-812
    • /
    • 2020
  • In cells, proteins form macromolecular complexes to execute their own unique roles in biological processes. Conventional structural biology methods adopt a bottom-up approach starting from defined sets of proteins to investigate the structures and interactions of protein complexes. However, this approach does not reflect the diverse and complex landscape of endogenous molecular architectures. Here, we introduce a top-down approach called Electron Microscopy screening for endogenous Protein ArchitectureS (EMPAS) to investigate the diverse and complex landscape of endogenous macromolecular architectures in an unbiased manner. By applying EMPAS, we discovered a spiral architecture and identified it as AdhE. Furthermore, we performed screening to examine endogenous molecular architectures of human embryonic stem cells (hESCs), mouse brains, cyanobacteria and plant leaves, revealing their diverse repertoires of molecular architectures. This study suggests that EMPAS may serve as a tool to investigate the molecular architectures of endogenous macromolecular proteins.

Reliability of In Vitro Assay for Initial Depigmenting Agent Screening (미백제 선발을 위한 In Vitro 측정법의 신뢰도)

  • Nguyen, Dung H.;Nguyen, Duc T.M.;La, Lyun Hwa;Lee, Hyang-Bok;Shin, Jung-Hyun;Kim, Eun-Ki
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.183-188
    • /
    • 2008
  • Initial screening assay for depigmenting agents includes in vitro mushroom tyrosinase assay and antioxidant assay. Based on this screening result, melanin synthesis in melanocyte, in screened samples, is further measured. Measuring cellular melanin needs time, human resource, and skills. Therefore initial screening method should be reliable. We examined, 34 Chinese herbs, correlated the screening assay methods with cellular melanin. No reliable relationship was observed between factors, indicating the limitation in the use of these assays, probably due to the complexicity of melanogenesis.

Differences in Breast Cancer Screening Rates according to Obesity and Weight Perception among Korean Women (한국 여성의 비만과 체형인식왜곡에 따른 유방암 검진율 차이)

  • Kim, Sejeong;Kim, Hee-Seung;Kim, Hye-Jin
    • Journal of Korean Biological Nursing Science
    • /
    • v.20 no.3
    • /
    • pp.169-176
    • /
    • 2018
  • Purpose: This study was performed to elucidate whether the obesity or body image is a barrier to breast screening compliance in Korean women. Methods: We included 54,017 women aged between 35 to 70 years from the Korea Community Health Survey (KCHS) 2014 dataset. To identify whether a mutual relationship exists between weight perceptions and breast cancer screening rates, the participants were divided into three groups according to the level of concordance between Body Mass Index (BMI) and a subjective body image. Descriptive analyses, a chi-square test, and multivariate logistic regression analyses were performed. Results: After covariate adjustment, the screening rate of the overweight group was 1.09 times higher than the normal weight group (odds ratio [OR], 1.09; confidence interval [CI], 0.00-0.16; p= .038) and the severe obesity group was 1.20 times lower (OR, 0.83; CI, -0.36-0.00; p= .047). Weight misperception also had a significant influence on breast cancer screening. Especially, The overweight distortion group was less likely to undergo breast cancer screening (OR, 0.93; CI, -0.15-0.00; p= .037). Conclusion: Obesity and weight misperceptions are associated with lower compliance with breast cancer screening guidelines.

Selection of Environmental Friendly Organic Agricultural Materials for Controlling Ginseng Gray Mold (인삼 잿빛곰팡이병의 친환경방제를 위한 유기농업자재 선발)

  • Kim, Woo Sik;Kim, Jong Seong;Park, Jee Sung;Ahn, In;Park, Kyung Hoon;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.473-479
    • /
    • 2015
  • Background : To control ginseng gray mold, farmers have mainly used inorganic chemical based fungicides. The recent emergence of fungicide resistance has reduced the effectiveness of such control methods. Such pesticides also carry additional problems, such as diffuse pollution. Methods and Results : Six treatments of organic agricultural materials were tested for control of ginseng gray mold, CAPW (Chrysophanic acid + Phytoncide + Wood vinegar), EmEWV (Emodin + Ethanol + Wood vinegar), CEWV (Curcumin + Eugenol + Wood vinegar), Bacillus subtilis, soybean oil and sulfur. The control effect for gray mold by a single application of the agrochemical fungicide industrial Fenhexamid wettable powder (WP) was 84.4%. The control effect by CAPW, EmEWV and CEWV varied between 52.7 - 64.9%. The control effect by B. subtilis, soybean oil, and sulfur were 32.9 - 59.2%. Conclusions : In the field tests, CAPW showed the highest control effects when used before, and at first stage of disease incidence, against ginseng gray mold.

Epimers/Metabolites of Tetracycline Derivatives; Biological Activity and Regulation Aspects for MRL in Food (생물학적활성을 기초로 한 테트라싸이클린계 항생물질 잔류스크리닝법의 개선과 식품 중 잔류허용기준 설정 개선)

  • Kwon, Jin-Wook;Yun, Hyo-In;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.82-88
    • /
    • 2011
  • BACKGROUND: Tetracyclines (TCs) are mainly regulated as parent compounds by bioactivity-based screening methods in food. Especially with respect to antimicrobial residues, their metabolites/epimers are also highly concerning chemicals and traditionally applied microbial detection methods are needed to improve with validation for regulatory control. METHODS AND RESULTS: Detection capability and biological activity of tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC) and their epimers; anhydrotetracycline (ATC), epianhydrotetracycline (EATC), epitetracycline (ETC), 4-epi-chlortetracycline (ECTC), 4-epianydrochlotetra-cycline (EACTC), 4-epioxychlortetracycline (EOTC), were measured by microbial growth inhibition screening method of Korea Food Code. CONCLUSION(S): Limited detection capabilities were found, B. megarerium and B. subtilis showed for TC and CTC, and B. subtilis for OTC. Biological potency of each epimer was also presented against various microorganisms, at the level from 50% to 96%, comparing with parent TCs. It is recommended that more advanced microbial screening methods with validation are needed, and biologically active epimers are to be considered as marker residues for MRL setting of regulatory control purpose.

Development of PCR-Based Screening Methods for Macrolide Type Polyketides in Actinomycetes

  • Hyun, Chang-Gu;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.119-124
    • /
    • 1999
  • About two thirds of the naturally occurring antibiotics have been discovered from actinomycetes. Therefore, the probability of discovering further new antibiotics from actinomycetes is declining as many known metabolites are isolated repeatedly. However, various efforts leave been made in order to enhance the probability of discovering novel compounds. In the present study, we have developed new screening strategies based on the antibiotic biosynthetic pathway, and the genetic information, utilizing polymerase chain reaction. We have selected macrolide type polyketides. In order to divide the ansamycin group antibotic of macrolide type polyketides, we have selected 3-amino-5-hydroxybenzoic acid (AHBA) moiety which contains a biosynthetically unique structural element in the group as a target molecules. Oligonucleotide primers were designed to amplify DNA fragments of macrolide type polyketide synthase and AHBA synthase genes from fourteen actinomycetes species. This method was successfully applied to all three of the known macrolide type polyketide produccing actinomycetes tested. In addition, it also identified the presence of potential macrolide type polyketide producing genes from seven actinomycetes that were known to produce none of macrolide type polyketides, and AHBA biosynthetic genes in one actinomycetes. This technique is potentially useful for the screening of new antibiotices and cloning of their biosynthetic genes.

  • PDF

Cell-Based Assay Design for High-Content Screening of Drug Candidates

  • Nierode, Gregory;Kwon, Paul S.;Dordick, Jonathan S.;Kwon, Seok-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.213-225
    • /
    • 2016
  • To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as high-content screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.