1 |
Cherkasov, A., Ban, F., Li, Y., Fallahi, M., and Hammond, G. L. (2006). Progressive docking: a hybrid QSAR/docking approach for accelerating in silico high throughput screening. Journal of medicinal chemistry 49, 7466-7478
DOI
ScienceOn
|
2 |
Cleves, A. E. and Jain, A. N. (2006). Robust ligand-based modeling of the biological targets of known drugs. Journal of medicinal chemistry 49, 2921-2938
DOI
ScienceOn
|
3 |
Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., and Mee, R. P. (1997). Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of computer-aided molecular design 11, 425-445
DOI
|
4 |
Oprea, T.I. and Matter, H. (2004). Integrating virtual screening in lead discovery. Curr. Opin. Chem. Biol. 8, 349-358
DOI
ScienceOn
|
5 |
Yoon, S., Smellie, A., Hartsough, D., and Filikov, A. (2005a). Computational identification of proteins for selectivity assays. Proteins 59, 434-443
DOI
ScienceOn
|
6 |
Sousa, S. F., Fernandes, P. A., and Ramos, M. J. (2006). Protein-ligand docking: current status and future challenges. Proteins 65, 15-26
DOI
ScienceOn
|
7 |
Klebe, G. (2006). Virtual ligand screening: strategies, perspectives and limitations. Drug Discov. Today 11, 580-594
DOI
ScienceOn
|
8 |
Hong, H., Tong, W., Fang, H., Shi, L., Xie, Q., Wu, J., Perkins, R., Walker, J. D., Branham, W., and Sheehan, D. M. (2002). Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts. Environmental health perspectives 110, 29-36
DOI
|
9 |
Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., and Shenkin, P. S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of medicinal chemistry 47, 1739-1749
DOI
ScienceOn
|
10 |
Blair, R. M., Fang, H., Branham, W. S., Hass, B. S., Dial, S. L., Moland, C. L., Tong, W., Shi, L., Perkins, R., and Sheehan, D. M. (2000). The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol. Sci. 54, 138-153
DOI
ScienceOn
|
11 |
Hand, D., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. (Cambridge, Massachsetts: The MIT Press)
|
12 |
Stahura, F. L. and Bajorath, J. (2004). Virtual screening methods that complement HTS. Comb. Chem. High Throughput Screen. 7, 259-269
DOI
ScienceOn
|
13 |
Warren, G. L., Andrews, C. W., Capelli, A. M., Clarke, B., LaLonde, J., Lambert, M. H., Lindvall, M., Nevins, N., Semus, S. F., Senger, S., Tedesco, G., Wall, I. D., Woolven, J. M., Peishoff, C. E., and Head, M. S. (2006). A critical assessment of docking programs and scoring functions. Journal of medicinal chemistry 49, 5912-5931
DOI
ScienceOn
|
14 |
Chen, B., Harrison, R. F., Papadatos, G., Willett, P., Wood, D. J., Lewell, X. Q., Greenidge, P., and Stiefl, N. (2007). Evaluation of machine-learning methods for ligand-based virtual screening. Journal of computer-aided molecular design 21, 53-62
DOI
|
15 |
Yoon, S., Smellie, A., Hartsough, D., and Filikov, A. (2005b). Surrogate docking: structure-based virtual screening at high throughput speed. Journal of computer-aided molecular design 19, 483-497
DOI
|
16 |
Cho, A. E., Guallar, V., Berne, B. J., and Friesner, R. (2005). Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. J. Comput. Chem. 26, 915-931
DOI
ScienceOn
|
17 |
Hawkins, P. C., Skillman, A. G., and Nicholls, A. (2007). Comparison of shape-matching and docking as virtual screening tools. Journal of medicinal chemistry 50, 74-82
DOI
ScienceOn
|
18 |
Kitchen, D. B., Decornez, H., Furr, J. R., and Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935-949
DOI
ScienceOn
|
19 |
Yoon, S. and Welsh, W. J. (2004). Identification of a minimal subset of receptor conformations for improved multiple conformation docking and two-step scoring. J. Chem. Inf. Comput. Sci. 44, 88-96
DOI
|