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Abstract

Computational virtual screening has become an essential
platform of drug discovery for the efficient identification of
active candidates. Moleculardocking, a key technology of
receptor-centric virtual screening, is commonly used to
predict the binding affinities of chemical compounds on
target receptors. Despite the advancement and extensive
application ofthese methods, substantial improvementis
still required to increase their accuracy and time-efficiency.
Here, we evaluate several advanced structure-based
virtual screening approaches for elucidating the rank-order
activity of chemical libraries, and the quantitative structure-
activity relationship (QSAR). Our results show that the
ensemble-average free energy estimation, incduding implicit
solvation energy terms, significantly improves the hit
enrichment ofthe virtual screening. Ve also demonstrate
that the assignment of quantum mechanical-polarized
(QMHpolarized) partial charges to docked ligands contributes
to the reproduction of the crystal pose of ligands in the
docking and scoring procedure.

Kaywords: virtual screening, docking and scoring, QSAR,
drug discovery

Introduction

One ofthe major challenges in drug discoveryis toidentify
novel compounds with biological activity. Computer-aided
drug discovery technology has become an essential and
powerful platform forthe discovery of new lead compounds,
as an altemative from, and complement to expernimental
approaches. As the number of high resolution structures
of potential therapeutic targets and small molecules has
grown, the significance of ir sifico experimental approaches
has become increasingly important as demonstrated in
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recent studies by making use of public data (Cherkasov
et al,, 2008; Cleves and Jain, 2006; Yoon &f a/., 2005a; b).

Virtual high-throughput screening (Klebe, 2006; Oprea
and Matter, 2004}, which is a method to rapidly identify
biologically active compounds in sifico, can be roughly
divided into two categories; ligand-centric and receptor-
centric. Ligand-centric methods essentially focus on the
comparative analysis of the structural shapes and
chemical complementarities between compounds and
known ligands. A knowledge of the experimentally selected
active compounds is a prerequisite when using this
approach (Stahura and Bajorath, 2004}). Receptor-centric
methods predict the interaction of given compounds with
atarget receptor, and hence they do not require experimental
data about the structure ofthe ligand. Molecular docking
is one ofthe key methodologies for receptor-centric virtual
screening. It is atechnique for predicting the best binding
mode for a given compound that fits into a target receptor,
and evaluating its binding affinity. The docking approach
has become a primary technique used in many drug
discovery programs (Kitchen &f al, 2004; Sousa ef af., 2006).

The docking process involves a conformational search
for a compound which complements a target binding site,
with the aim of identifying the best-matching binding pose.
A common computational strategy is to use a suitable
scoring function to theoretically evaluate the binding
affinities of thousands of molecules in a compound library
for a target protein. An accurate rank-ordered prediction
of the compound binding affinities using the scoring
function is an invaluable step. Most of scoring functions
used in docking programs are designed to predict binding
affinity by evaluating the interaction between a compound
and a receptor. However, it should be noted that ligand-
receptor recognition process is determined not only by
enthalpic effects but also by entropic effects. Moreover, the
scoting functions have a simplified form for the energy
function to facilitate high-throughput evaluation of a large
number of compounds in a single docking run. These
functions may be problematic when used with contemporary
docking programs, and can result in a decrease of virtual
screening accuracy. To overcome this problem, more
precise but time-consuming computational methodologies
are necessary.

There have been a number of reports evaluating the
efficiency of various virtual screening approaches, including
the evaluation of docking programs (Warren ef al., 2006),
machine-leaming methods for ligand-based descriptors
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(Chen &f af., 2007) and comparison of shape-matching with
docking (Hawkins ef af., 2007). Here, we describe and
evaluate several receptor-centric computational methodologies
which are applicable for use in drug discovery applications.
We focus on accurate docking and rank-ordering for the
improvement of the predictability of biologically active
compounds.

Overview of the Methodologies Tested
in This Study

We applied several computational solutions from the
Schrédinger software package (Schrédinger, LLC:
Portland, OR). A brief overview of these methodologies
is presented.

Glide Docking

We used the Glide program (Friesner &f a/., 2004) as our
dockingengine. The Glide docking algorithm performs a
series of hierarchical searches for locations of possible
ligand affinity within the binding site of a receptor. A rough
positioning and scoring algorithm is applied during the
inttial search step, followed by torsional energy optimization
on an OPLA-AA non-bonded potential energy grid for
enduring candidate poses. The pose conformations ofthe
very best candidates are further refined by using Monte
Carlo sampling. Selection of the final docked pose is
accomplished using a Glicle score, which is a model energy
function that combines empirical and force-field-based
terms. The Glide score is a modified and extended version
of the ChemScore function (Eldridge et af., 1997).

Multi-Ligand Bimolecular Association with Energetics
{eMBrACE)

The eMBrAcE (MacroModef v3.1) program calculates
binding energies between ligands and receptors using
molecular mechanics energy minimization for docked
conformations. eMBrAcE applies multiple minimizations,
during which each ofthe specified pre-positioned ligands
is minimized with the receptor. Forthe energy-minimized
structures, the calculation is performed first on the receptor
(Exvtan), then on the ligand (Eggang), and finally on the
complex (E.mpe). The energy difference isthen calculated
as:

AE = Ecompfex' Eﬂgarﬂ - Eprcfe.fn

Prime MM-GBSA
This application is used to predict the free binding energy

between a receptor and a ligand. MM-GBSA is a method
that combines OPLS molecular mechanics energies
(Ewm), surface generalized Born solvation model for polar
solvation (Gzgg), and a nonpolar solvation term (Gie). The
Gre term comprises the nonpolar solvent accessible
surface area and van der\Waals interactions. The total free
energy of binding is calculated as:

AGping = Gmmp.l’ex - (Gp.rofedn + Gﬁgarﬂ)
G = Euuy + Gses + Gie

Liaison

The Liaison {Liaison v4.0) program is an application for
estimating the binding affinities between ligands and
receptors, using a linear interaction approximation (LIA)
maodel. The LIA model is an empirical method fitted to a set
of known binding free energies. Liaison runs molecular
mechanics (MM) simulations for the ligand-receptor
complex, and for the free ligand and free receptor using
the surface generalized Born (SGB) continuum solvation
model. The simulation data and empirical binding affinities
are analyzed to generate the Liaison parameters, which
are subsequently usedto predict binding energies for other
ligands with the same receptor. The empirical function
used by Liaison for the prediction ofbinding affinities is as
follows.

AG=a({Tgy, )= (Ul ) T8 UL, )= (UL ))
+T(<D?:Jw>_<brc£v>)

Inthis equation, < >, band frepresent the ensemble
average, the bound form, and the free form ofthe ligand,
respectively. Parameters «, 2 and y are the coefficients.
Uviw, Uaiec and U5, are the van der Waals, electrostatic
and cavity energy terms in the SGB model, respectively.

QM-Polarized Ligand Docking (QPLD)

The QM-Polarized Ligand Docking (QPLD) protocol is an
improved docking method, which incorporates quantum
mechanical and molecular mechanical (QM/MM)
calculations (Cho ef al., 2005). This method applies the
Glide algorithm to generate the best candidate poses for
ligand docking. The partial charges on the atoms of the
ligand are then replaced with charges derived from QM
calculations on the ligand in the field ofthe receptorfor each
ligand-receptor complex. The charges are calculated from
the electrostatic potential energy surface of the ligand,
which is generated from a single-point calculation using
the BLYP density function for the QM region. Glide then
re-docks each of the ligands with updated atom charges,
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and returns the most energetically favorable pose.

Matenals and Methods
Preparation of the Receptor

Two receptor co-crystal structures, estrogen receptor o
(ERa, PDB entry: 3ERD) and peroxisome proliferator-
activated receptor v (PPARy, PDB entry: 1KNU), both of
which belong to the nuclear receptor superfamily, were
used in this study. The coordinates for these proteins were
obtained from the RCSB Protein Data Bank (http:/fwmawy.
resb.orgfpdb).

Preparation of the Ligands

We obtained the SMILES representation of 232 test
compounds, for which the experimental binding affinities
were taken from published data (Blair ef a/., 2000; Hong
ef al, 2002). The experimental binding affinities were
represented as log(RBA) (Yoon and Welsh, 2004), where
RBA refers tothe relative binding affinity and log(RBA) is
defined as the logarithm of the percent ratio of the ICqp
between 175estradiol and a test compound. Thus, the
RBA of 17-estradiol is 100, and log(RBA) of 175-estradiol
is 2. Vve then generated 3D energy-minimized conformations
ofthese compounds using the LigPrep program (LigPrep
v2.0, Schridinger, LLC: Portland, OR.). Compounds with
atom types that were not recognized by LigPrep were
eliminated from the test set. This resulted in the retention
of 173 of the original 232 compounds.

The Glide Docking Protocol

For Glide docking, PDB co-crystal structures of ERa and
PPARy were prepared usingthe Maestro interface of the
Schridinger software package. All water molecules were
removed, and multimeric complexes were simplified from
the PDB structures. Prior to molecular docking, receptor
structures were preprocessed using protein preparation
and refinement components in the Glide docking package.
Hydrogen atoms were added by applying an all-atom force
field. Side chains that were not close tothe ligand binding
site and did not participate in salt bridges were neutralized.
A restrained minimization using the OPLS-AA force field
was performed to refine the complex structure. This
procedure reorients side-chain hydroxyl groups, and
alleviates potential steric clashes. The minimization
process was continued until the average RMS deviation
of the non-hydrogen atoms reached the specified limit of
0.3 A. Once receptor grid files had been generated, all
compounds were docked to the receptor structures using

the standard mode of Qlide docking (Glide SP 4.0).

Ligand & Structure-Based Descriptors (LSBD)
Protocol

The eMBrAcE, Prime MM-GBSA and Liaison calculations
were performed using the Ligand & Structure-Based
Descriptors (LSBD) application ofthe Schrodinger software
package. These calculaions were applied the ligand-receptor
complex structures obtained from Glide docking.

The QM-Polarized Ligand Docking Protocol

The grid for QPLD was set up as a grid file in PPARy using
the grid generation data from the previous Glide standard
docking operation. The ligand to be QPLD-docked was
prepared from the cognate ligand bound in PPARy. An
energy-minimized conformation of the extracted cognate
ligand was generated using LigPrep. The level of
quanturtmechanical treatment was set up as Fast mode.

Results and Discussion

One of the key challenges in computer-aided drug
discovery isto maximize the capabilities of the method in
use for predicting and rank-ordering the binding affinities
of compounds for a given target protein. The efficiency of
a prediction method is predominantly determined by these
capabilities. Various descriptors extracted from the
structural information on ligand-receptor complex may
provide an advantageous solution to creating a reliable
binding-affinity-prediction model. Here, we combinedthe
results obtained from a standard docking protocol with
data from three different structure-based descriptors, and
then investigated the utility of these descriptors on the
virtual screening efficiency for ER« ligands (Fig. 1). The
virtual screening efficiency was compared using an
analysis of receiver operating characteristic (ROC) curves
(Hand ef ai., 2001). A ROC curve describes the tradeoff
between sensitivity and specificity, where the sensitivity
is defined as the ability of the model to avoid false
negatives, and the specificity relates to its ability to avoid
false positives. The area under the ROC curve (AUC) is
a measure of the test accuracy. For example, an AUC value
of 0.5 represents a random prediction, whereas 1.0
represents a perfect prediction.

For a total of 94 true positives with log(RBA) > -4.0
(comresponding to > 200 pM activity), AUC values ranged
narrowly from 0.71 to 0.75, depending on the scoring
methods tested. The standard docking scoring (Glide
score in the figure) method having 0.75 AUC could slightly
enrich the virtual screening, and was betterthan the other
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Fig. 1. Virtual screening efficiency of four different scoring methods on ERua ligands; standard Glide docking (Glide score),
Multi-Ligand Bimolecular Association with Energetics (eMBrAcE), Prime MM-GBSA calculation (MM-GBSA) and Liaison
calculation (LiaScore). (a) 94 true positives with log(RBS) > —4.0, (b) 43 true positives with log(RBS) > 2.0, (¢) 13 true positives
with log(RBS) > 0.0 out of a total of 173 compounds. The calculated AUC values are included in the insets.

descriptor-combined scoring methods (Fig. 1a). In Figure
1b we applied a more stringent definition of “active” versus
“‘inactive” compounds. Since ~10 uM activity is generally
the minimum required to identify initial lead compounds in
drug discovery programs, we set log(RBA) > -2 as the
cutoff, which corresponds to a 10—100 uM activity for ERa.
In this case the Liaison scoring method (LiaScore in the
figure) significantly improved the efficiency of virtual
screening. On the other hand the Prime MM-GBSA method
(MM-GBSA in Figure) showed the lowest level of
enrichment of the process. An even more stringent
definition of log(RBA) > 0, corresponding to the binding
affinity in a nanomolar activity range, can indicate a lead
compound as being ‘promising’ in general drug discovery
terms. At this cutoff value only 13 compounds were
classified as active. The overall trends in the graphs were
similar to the graphs of log(RBA) > —2 cutoff. The virtual

screening efficiency was generally improved, exceptin the
case of the MM-GBSA scoring method (Fig. 1c). These
results indicate that methodologies with a better prediction
precision in binding affinities, though more time-consuming,
can provide a significant advantage in prioritizing candidate
compounds with high biological activity (low micromolar
or nanomolar activity). Among the scoring methods tested,
the Prime MM-GBSA method showed a relatively poor
prediction capability when screening the compounds with
high binding affinities.

Obtaining accurate structural information on the
binding pose of a ligand at a binding site is essential to the
design of optimized lead compounds in computer-aided
drug discovery. An accurate calculation of atomic partial
charges of aligand in the field of the receptor would result
in improved docking results. \We tested whether charges
obtained from the QM/MM calculation for ligand/PPARY
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(b)

Fig. 2. Overlapped docking poses of a cognate ligand at the binding site of PPARy obtained from (a) Glide docking (RMSD =2.17
A) and (b) QPLD (RMSD = 0.86 A). In this figure the conformations of the ligand in the co-crystal structure (purple), from Glide

docking (brown) and from QPLD (yellow), are represented.
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Fig. 3. Comparison between (a) force-field charges and (b) quantum mechanical charges for the PPARy cognate ligand from standard Glide

docking and QPLD docking.

structure would provide a more precise binding pose
compared to the standard docking method, which relies
on the default force-field charges. The results of a standard
docking run and a QPLD run for a cognate ligand of PPARy
are shown in Fig. 2. The RMSD (Root Mean Square
Deviation) value between crystal and docked poses of the
cognate ligand was 2.17 A from the standard docking run,
while the QPLD method returned a significantly improved
RMSD value of 0.86 A. Atomic charge values in parts of
the ligand structure were revealed (Fig. 3). We confirmed
the existence of significant changes in partial charges by
using the QM/MM calculation of the QPLD run. These
results indicate that polarization effects induced by the field
of the receptor can significantly affect the final conformation
of aligand bound to PPARy. V\e have therefore demonstrated
that an additional process of calculating subtle changes
in charges, by incorporating environmental polarization
effects, considerably improves the accuracy of docking
predictions.

In this article we have introduced several advanced
computer-aided drug discovery methodologies for receptor-entric

virtual screening. We have evaluated their reliability using
a set of test ligands and two receptor structures belonging
to the nuclear receptor superfamily. Our data suggest that
some of these methodologies significantly improve virtual
screening efficiency by better prioritizing active compounds,
and by more precisely reproducing the crystal pose of
cognate ligands. Although the current study does not
involve a large number of receptors and test sets of
compounds, our evaluation data should add valuable
information that may enhance the practice of computer-
ased drug discovery.
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