• Title/Summary/Keyword: Biogas generation

Search Result 80, Processing Time 0.023 seconds

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.

Study on Feasibility of Integrated Two-Phase Anaerobic Digestion Using Foodwaste Water by Reviewing of Operating Efficiency (일체형 2상 혐기성소화 운전효율 검토를 통한 음폐수 처리 타당성에 관한 연구)

  • Song, Hancheul;Kim, Dongwook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The purpose of this study was to review of technical, economical feasibilities regarding Integrated Two-Phase Anaerobic Digestion(ITPAD) method. In order for that, operation conditions and data with 24tpd capacity of operating ITPAD plant were analyzed. The result showed that VS removal efficiency was 73.7% and total amount of biogas was generated $1,239m^3/day$ on the average that represents $54.4m^3/ton$-input of generation efficiency. ITPAD had advantages in terms of required area and energy for heating which were analyzed 15.9%~47%, 11.6%~17.8% lower respectively compared to Conventional Separated Two-Phase Anaerobic Digestion(CSTPAD) method. Thus, it is considered the ITPAD has comparatively high feasibility to be expanded and commercialized to dispose high concentration organic matter of waste such as food waste and its leachate.

Study on the Public Food Waste Recycling Facility Operation (I) - Focusing on the Current State of Operation and the Problems - (음식물류폐기물 공공 자원화시설 운영에 관한 연구 (I) - 운영현황과 문제점을 중심으로 -)

  • Hong, Yong-Pyo;Kim, Hye-Sun;Kim, Ung-Yong;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • This study is conducted to find out problems of the public food waste recycling facility and its improvement. Through a research on the actual condition, it is possible to analyze the problem of operation. Moreover, for this improvement, with analysis of the current state of recycling rate including its generation and the problem that can be shown from the real operation of the public/private food waste recycling facility, the results are as follows: It can be shown that the current amount of domestic food waste resource recycling is about 97 %. Almost every public recycling facility is analyzed to be economically infeasible and is not for recovery but to simple disposal. Especially, most of Biogas facilities appeared that amount of production and demand is not appropriate differed from enforcement design.

Treatment of Garbage Leachate with Two-phase Anaerobic Digestion Coupled with Ultra Filtration (막결합형 2상 혐기성 소화 공정을 이용한 음식물 탈리액 처리)

  • Lee, Eun-Young;Kim, Hyung-Kuk;Giang, Luu Thi Thuy;Bae, Jae-Ho;Bae, Young-Shin;Won, Jong-Choul;Lee, Jae-Hoon;Park, Seung-Kyun;Cho, Yong-Wan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.997-1006
    • /
    • 2009
  • Organic removal efficiency and methane production rate, a feasibility of power generation from biogas, and the optimum conditions for membrane operation were evaluated for the pilot scale (5 tons/day) two-phase anaerobic digestion coupled with ultra filtration (TPADUF) system fed with garbage leachate. The TPADUF system is consisted of a thermophilic acidogenic reactor, a mesophilic methanogenic reactor, and an UF membrane. When garbage leachate with 150 g/L of TCOD was fed to the TPADUF up to organic loading rate (OLR) of 11.1 g COD/L/d, the effluent TCOD was lower than 6 g/L and the average removal efficiencies of TCOD and SCOD were higher than 95%. The methane composition of the gas was 65%, and the methane yield was 39 $m^3/m^3$ garbage leachatefed, 260 $m^3$/tons $COD_{added}$, or 270 $m^3$/tons $COD_{removed}$, even there was some gas leak. The power production per consumed gas was 0.96 kWh/$m^3$ gas or 1.49 kWh/$m^3$ methane. This lower power production efficiency mainly due to the small capacity of gas engine (15 kW class). The membrane was operated at the average flux of 10 L/$m^2$/hr. When the flux decreased, washing with water and chemical (NaOCl) was conducted to restore the flux. In the TPADUF system, optimum pH could be maintained without alkali addition by recycling the membrane concentrate or mixed liquor of the methanogenic digester to the acidogenic reactor. Also, partial production of methane in the acidogenic reactor had a positive effect on lowering the OLR of the methanogenic reactor.

A study on the introduction of organic waste-to-energy incentive system(III): Preparation of an incentive system for biogasification (proposal) (유기성폐자원에너지 인센티브제도 도입방안 연구(III): 바이오가스화 인센티브제도(안) 마련)

  • Moon, Hee-Sung;Kwon, Jun-Hwa;Lee, Won-Seok;Lee, Dong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.87-97
    • /
    • 2021
  • This study was conducted to prepare an incentive system (proposal) for the activation of waste-to-energy. Weights for each type of energy use were prepared by conducting prior research and economic analysis. In addition, the waste-to-energy incentive (proposal) was calculated in consideration of energy efficiency for each type of energy use. As a result of economic analysis of 11 biogasification facilities, the B/C value was found to be very diverse, ranging from 0.16 to 1.69. In terms of benefits, imports of waste treatment import fees were very high at 68.4 to 99.3% of the total, and four facilities with a surplus (+) or higher in the management balance. In order to convert energy consumption into units of sales volume, 0.58 Nm3/KW for power generation, 0.17 Nm3/kg for steam, and 1.00 Nm3/Nm3 for external supply were calculated using the 'scale factor'. The 'weight factor' was calculated as 0.249 for power generation, 0.656 for steam, and 0.806 for external supply, respectively, by use type.

A study on the introduction of organic waste-to-energy incentive system(I): Precise monitoring of biogasification (유기성폐자원에너지 인센티브제도 도입방안 연구(I): 바이오가스화 정밀모니터링)

  • Kwon, Jun-Hwa;Moon, Hee-Sung;Lee, Won-Seok;Lee, Dong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.67-76
    • /
    • 2021
  • Biogasification is a technology that produces environmentally friendly fuel using methane gas generated in the process of stably decomposing and processing organic waste. Biogasification is the most used method for energy conversion of organic waste with high moisture content, and is a useful method for organic waste treatment following the prohibition of direct landfill (2005) and marine dumping (2013). Due to African Swine Fever (ASF), which recently occurred in Korea, recycling of wet feed is prohibited, and consumers such as dry feed and compost are negatively recognized, making it difficult to treat food waste. Accordingly, biogasification is attracting more attention for the treatment and recycling of food waste. Korea's energy consumption amounted to 268.41 106toe, ranking 9th in the world. However, it is an energy-poor country that depends on foreign imports for about 95.8% of its energy supply. Therefore, in Korea, the Renewable Energy Portfolio Standard (RPS) is being introduced. The domestic RPS system sets the weight of the new and renewable energy certificate (REC, Renewable energy certificate) of waste energy lower than that of other renewable energy. Therefore, an additional incentive system is required for the activation of waste-to-energy. In this study, the operation of an anaerobic digester that treats food waste, food waste Leachate and various organic wastes was confirmed. It was intended to be used as basic data for preparing the waste-to-energy incentive system through precise monitoring for a certain period of time. Four sites that produce biogas from organic waste and use them for power generation and heavy gas were selected as target facilities, and field surveys and sampling were conducted. Basic properties analysis was performed on the influent sample of organic waste and the effluent sample according to the treatment process. As a result of the analysis of the properties, the total solids of the digester influent was an average of 12.11%, and the volatile solids of the total solids were confirmed to be 85.86%. BOD and CODcr removal rates were 60.8% and 64.8%. The volatile fatty acids in the influent averaged 55,716 mg/L. It can be confirmed that most of the volatile fatty acids were decomposed and removed with an average reduction rate of 92.3% after anaerobic digestion.

Development of Land Fill Gas(LFG)-MGT Power Generation and Green House Design Technology (쓰레기 매립지 MGT 발전 및 유리온실 설계기술개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • The high fuel flexibility of Micro Gas Turbine(MGT) has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and landfill as a fuel for gas turbines has increased. We researched the influence of firing landfill gas(LFG) on the performance and operating characteristics of a micro gas turbine combined heat and power system. $CH_4$ and $CO_2$ simultaneous recovery process has been developed for field plant scale to provide an isothermal, low operating cost method for carrying out the contaminants removal in Land Fill Gas(LFG) by liquid phase catalyst for introduce into the green house for the purpose of $CO_2$ rich cultivation of the plants. Methane purification and carbon dioxide stripping by muti panel autocirculation bubble lift column reactor utilizing Fe-EDTA was conducted for evaluate optimum conditions for land fill gas. Based on inflow rate of LFG as 0.207 $m^3$/min, 5.5 kg/$cm^2$, we designed reactor system for 70% $CH_4$ and 27% $CO_2$ gas introduce into MGT system with $H_2S$ 99% removal efficiency. A green house designed for four different carbon dioxide concentration from ambient air to 1500 ppm by utilizing the exhaust gas and hot water from MGT system.

Treatment of Seafood Wastewater using an Improved High-rate Anaerobic Reactor (개선된 고율혐기성 공정을 이용한 수산물 가공폐수처리)

  • Choi, Byeong-Yeong;Choi, Yong-Bum;Han, Dong-Jun;Kwon, Jae-Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7443-7450
    • /
    • 2014
  • To resolve shortcomings of high-rate anaerobic processes, such as high upward flow velocity, this study sought to improve the structure of the high-rate anaerobic reactor and evaluate its performance. The improved reactor was manufactured by adjusting the diameter and dividing the reactor into three parts. The evaluation of the structurally improved reactor revealed that the reactor could stabilize a single circuit, and prevent the accumulation of solid matter and leakage of microbes, thereby stabilize the microbes. In the process of anaerobic digestion, an increase in pH and alkalinity within the reactor was presumably attributed to bicarbonate created in the process of organic matter decomposition and due to the re-dissolution of some biogas. To maintain a high rate of organic matter removal, the reactor should be operated with more than 9 hrs of HRT and an organic matter load of under $10.kgTCODcr/m^3{\cdot}d$. The methane gas generated in the anaerobic digestion process showed a high content of 65~83 % at the organic matter load of over $7.7kgTCODcr/m^3{\cdot}d$. per removal of CODcr. The methane quantity was generated at $0.10{\sim}0.23m^3CH_4/kgCOD_{rem}$, showing that it was smaller than the theoretical methane generation amount (0.35) in the STP state. In the latter part of high-rate anaerobic process, an advanced treatment process was required to remove nitrogen.

Data Build-up for the Construction of Korean Specific Greenhouse Gas Emission Inventory in Livestock Categories

  • Won, S.G.;Cho, W.S.;Lee, J.E.;Park, K.H.;Ra, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • Many studies on methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock industries have revealed that livestock production directly contributes to greenhouse gas (GHG) emissions through enteric fermentation and manure management, which causes negative impacts on animal environment sustainability. In the present study, three essential values for GHG emission were measured; i.e., i) maximum $CH_4$ producing capacity at mesophilic temperature ($37^{\circ}C$) from anaerobically stored manure in livestock category ($B_{0,KM}$, Korean livestock manure for $B_0$), ii) $EF_{3(s)}$ value representing an emission factor for direct $N_2O$ emissions from manure management system S in the country, kg $N_2O-N$ kg $N^{-1}$, at mesophilic ($37^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures, and iii) $N_{ex(T)}$ emissions showing annual N excretion for livestock category T, kg N $animal^{-1}$ $yr^{-1}$, from different livestock manure. Static incubation with and without aeration was performed to obtain the $N_2O$ and $CH_4$ emissions from each sample, respectively. Chemical compositions of pre- and post- incubated manure were analyzed. Contents of total solids (% TS) and volatile solid (% VS), and the ratio of carbon to nitrogen (C/N) decrease significantly in all the samples by C-containing biogas generation, whereas moisture content (%) and pH increased after incubation. A big difference of total nitrogen content was not observed in pre- and post-incubation during $CH_4$ and $N_2O$ emissions. $CH_4$ emissions (g $CH_4$ kg VS-1) from all the three manures (sows, layers and Korean cattle) were different and high C/N ratio resulted in high $CH_4$ emission. Similarly, $N_2O$ emission was found to be affected by % VS, pH, and temperature. The $B_{0,KM}$ values for sows, layers, and Korean cattle obtained at $37^{\circ}C$ are 0.0579, 0.0006, and 0.0828 $m^3$ $CH_4$ kg $VS^{-1}$, respectively, which are much less than the default values in IPCC guideline (GL) except the value from Korean cattle. For sows and Korean cattle, $N_{ex(T)}$ values of 7.67 and 28.19 kg N $yr^{-1}$, respectively, are 2.5 fold less than those values in IPCC GL as well. However, $N_{ex(T)}$ value of layers 0.63 kg N $yr^{-1}$ is very similar to the default value of 0.6 kg N $yr^{-1}$ in IPCC GLs for National greenhouse gas inventories for countries such as South Korea/Asia. The $EF_{3(s)}$ value obtained at $37^{\circ}C$ and $55^{\circ}C$ were found to be far less than the default value.

Realization of Zero Waste Clean City to Low Carbon Green Growth (저탄소 녹색 성장을 위한 폐기물 제로 청정도시 구상)

  • Oh, Jeong-Ik;Ahn, Soo-Jeung;Kim, Jong-Yeob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.131-140
    • /
    • 2010
  • Zero waste clean city was visualized by designing the environmental fundamental facilities such as automated waste collection and bio-energizing system of domestic waste, which was categorized into food and combustible waste from urban area. The biomass circulation position was applied to the domestic waste collection position combined with bio-energizing system in the zero waste clean city. Bio-energizing system consisted of bio-gasification, bio-fuel and bioenergy-circulation process. Food wastes were treated by bio-gasification with anaerobic digestion, and combustible wastes were made of bio-fuel with pyrolysis/drying. Biogas and bio-fuel was utilized into the electric generation or boiler heat in bioenergy-circulation process. The emission of carbon dioxide(CO2) and construction fee of the environmental fundamental facilities related with domestic waste was estimated in the existing city and zero waste clean city, assuming the amount of food waste 35 ton/day, combustible waste 20 ton/day from domestic area. Consequently, 2.7 times lower carbon dioxide emission and 15% construction fee of the environmental fundamental facilities related with domestic waste were obtained from the zero waste clean city by comparing with existing city.