Realization of Zero Waste Clean City to Low Carbon Green Growth

저탄소 녹색 성장을 위한 폐기물 제로 청정도시 구상

  • Oh, Jeong-Ik (Green Growth Research Team, Land & Housing Institute, Korea Land & Housing Corporation) ;
  • Ahn, Soo-Jeung (Green Growth Research Team, Land & Housing Institute, Korea Land & Housing Corporation) ;
  • Kim, Jong-Yeob (Green Growth Research Team, Land & Housing Institute, Korea Land & Housing Corporation)
  • 오정익 (한국토지주택공사 토지주택연구원 녹색성장연구실) ;
  • 안수정 (한국토지주택공사 토지주택연구원 녹색성장연구실) ;
  • 김종엽 (한국토지주택공사 토지주택연구원 녹색성장연구실)
  • Received : 2009.12.15
  • Accepted : 2010.01.15
  • Published : 2010.02.28

Abstract

Zero waste clean city was visualized by designing the environmental fundamental facilities such as automated waste collection and bio-energizing system of domestic waste, which was categorized into food and combustible waste from urban area. The biomass circulation position was applied to the domestic waste collection position combined with bio-energizing system in the zero waste clean city. Bio-energizing system consisted of bio-gasification, bio-fuel and bioenergy-circulation process. Food wastes were treated by bio-gasification with anaerobic digestion, and combustible wastes were made of bio-fuel with pyrolysis/drying. Biogas and bio-fuel was utilized into the electric generation or boiler heat in bioenergy-circulation process. The emission of carbon dioxide(CO2) and construction fee of the environmental fundamental facilities related with domestic waste was estimated in the existing city and zero waste clean city, assuming the amount of food waste 35 ton/day, combustible waste 20 ton/day from domestic area. Consequently, 2.7 times lower carbon dioxide emission and 15% construction fee of the environmental fundamental facilities related with domestic waste were obtained from the zero waste clean city by comparing with existing city.

도심 내에서 발생하는 음식물쓰레기와 일반 가연성쓰레기인 생활폐기물을 수거 및 집하한 후에 바이오매스로 활용하고 이를 이용하여 생성된 에너지는 주거 및 상업단지 등에 공급하는 폐기물 제로 청정도시를 구상하였다. 바이오매스 순환거점으로는 바이오에너지화 시스템을 연계한 생활폐기물 자동집하시설을 설정하였다. 바이오에너지화 시스템은 바이오가스화, 연료화, 에너지순환공정으로 구성하였다. 음식물쓰레기는 처리하면서 바이오가스화하고, 일반 가연성 쓰레기는 열분해/건조하여 연료화하며, 발생되는 바이오가스와 연료는 에너지 순환공정에서 발전기, 보일러의 연료로 사용되게 하였다. 또한, 가상의 사업 대상지구에서 음식물쓰레기 35 톤/일, 일반 가연성 쓰레기 20 톤/일로 생활폐기물 총 55 톤/일에 대한 처리 및 처분에 있어서 기존도시와 폐기물 제로 청정도시에서의 탄소저감 및 건설비를 비교하였다. 그 결과, 폐기물제로청정도시에서는 기존 도시 대비 연간 탄소배출량이 약 2.7배 저감 가능하고, 폐기물 관련 환경기초시설의 건설비도 기존도시에 비교하여 약 15%절감이 예측되었다.

Keywords

References

  1. 대한주택공사, 기후변화 대응 Zero Emission City 실현 예비 연구(2009).
  2. 대한주택공사, 미래를 여는 저탄소 녹색성장 이야기(2009).
  3. 대한주택공사, 미래주택 및 도시에서의 에너지자원 적용 방안 연구(2007).
  4. 박천규," 기후변화의 영향 및 우리의 대응방향", 대한환경공학회지, 30(12), 1179-1182(2008).
  5. 에너지관리공단, 신재생에너지원별 공급비중(2006).
  6. 동종인, "기후변화시대에 대비한 환경 에너지 및 온실가스 저감기술", 대한환경공학회지, 30(12), 1203-1206(2008).
  7. 환경부, 음식물류 폐기물 처리시설 발생폐수 육상처리 및 에너지화 종합대책(2007).
  8. 지식경제부, 그린에너지산업 발전전략(2008).
  9. 이귀호, 주홍신," 녹색기술 연구개발 정책방향", 대한환경공학회지, 31(3), 163-172(2009).
  10. Sam N., Paths to a low-carbon economy - the Masdar example, Energy Procedia, 3951-3958(2009)
  11. Summerfield, A. J., Lowe, R. J., Bruhns, H. R., Caeiro, J. A., Steadman, J. P. and Oreszczyn, T.," Milton Keynes Energy Park revisited: Changes in internal temperatures and energy usage, Energy and Buildings", 39(7), 783-791(2007) https://doi.org/10.1016/j.enbuild.2007.02.012
  12. Bauer, D., Marx, R., Nussbicker-Lux, J., Ochs, F., Heidemann, W. and M ller-Steinhagen, H., German central solar heating plants with seasonal heat storage, Solar Energy, In Press, Corrected Proof, Available online, (2009)
  13. 환경부, 경제살리기와 기후변화대응을 위한 폐기물에너지화 종합대책(2008).
  14. 정원식, 김이태, 쓰레기 관로수송시스템의 해외 적용사례 분석을 통한 효율적인 국내 적용방안 도출, 대한환경공학회 2005 춘계학술연구발표회 논문집, pp. 575-578(2005)
  15. 정영훈, 김호겸, 오정은, 쓰레기 집하시설, 대한설비공학회 2006년도 운송설비부문 학술강연회, pp. 22-37(2006)
  16. 배재근, 주요섭, 박정수, "음식물쓰레기 염분농도가 퇴비화 및 식물성장에 미치는 영향", 유기물자원화(구-폐기물자원화), 10(4), 103-111(2002)
  17. 박석환, "음식물쓰레기의 호기성 퇴비화 전과 후의 세척에 따른 염분도와 퇴비화효율 비교", 한국환경보건학회지, 31(2), 160-164(2005)
  18. 김남천, 장병만," 삼중염을 이용한 음식물쓰레기 퇴비 중 염 분제거 및 공정효율화 실험", 유기물자원화(구-폐기물자원화), 14(2), 83-90(2006)
  19. http://co2.kemco.or.kr/directory/toe.asp