DOI QR코드

DOI QR Code

Study on Feasibility of Integrated Two-Phase Anaerobic Digestion Using Foodwaste Water by Reviewing of Operating Efficiency

일체형 2상 혐기성소화 운전효율 검토를 통한 음폐수 처리 타당성에 관한 연구

  • Received : 2016.04.26
  • Accepted : 2016.05.13
  • Published : 2016.06.30

Abstract

The purpose of this study was to review of technical, economical feasibilities regarding Integrated Two-Phase Anaerobic Digestion(ITPAD) method. In order for that, operation conditions and data with 24tpd capacity of operating ITPAD plant were analyzed. The result showed that VS removal efficiency was 73.7% and total amount of biogas was generated $1,239m^3/day$ on the average that represents $54.4m^3/ton$-input of generation efficiency. ITPAD had advantages in terms of required area and energy for heating which were analyzed 15.9%~47%, 11.6%~17.8% lower respectively compared to Conventional Separated Two-Phase Anaerobic Digestion(CSTPAD) method. Thus, it is considered the ITPAD has comparatively high feasibility to be expanded and commercialized to dispose high concentration organic matter of waste such as food waste and its leachate.

본 연구는 음폐수를 대상으로 산발효와 메탄발효가 일체형으로 구성된 혐기성소화방식에 대한 경제적, 기술적 타당성 검토를 위함이며, 이를 위해 현재 운영 중인 24톤/일의 시설 운영현황 분석을 실시하였다. 실험 결과, 음폐수 내에 VS 기준 유기물 제거율은 73.7%로 분석되었으며, 바이오가스는 평균 $1,239m^3$/일($54.4m^3$/톤-투입음폐수)이 생산되었다. 일체형 소화조는 구조 특성상 분리형 2상 소화조 대비 설치 면적과 소요 열량이 각각 15.9%~47%, 11.6%~17.8%의 절감 효과가 있는 것으로 나타났다. 이상의 운전결과를 종합해보면, 분리형 소화 방식 대비 소요부지면적 축소, 시설비 절감 등의 이점이 기대되는 일체형 2상 혐기성소화 방식은 보다 상용화된 대형 플랜트로의 적용 타당성이 높을 것으로 판단된다.

Keywords

References

  1. Ministry of Environment, "Current State of Food waste Recycling Facilities in Korea"(2008-2013).
  2. Ministry of Environment, "The First Master Plan for Recycling of Resource"(2011).
  3. Ministry of Environment, "Technical Guideline for Food waste Anaerobic Digestion Plant"(2015).
  4. Shelton D., and Tiedje, J. M., "General method for determining anaerobic biodegradation potential", Appled and Environmental Microbiology, 47, pp. 850-857. (1984).
  5. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Waste water, 21th edition, American Public Health Association, Washington, DC., USA (2005).
  6. Ministry of Food and Drug safety in Korea, Korean Food Standards Codex, (2009).
  7. Owen, W. F., Stuckey, D. C., Healy, J. B., Young, Jr. L. Y., and McCarty, P. L., "Bioassay for monitoring biochemical methane potential and anaerobic toxicity", Water Research, 13(6), pp. 485-492. (1979). https://doi.org/10.1016/0043-1354(79)90043-5
  8. Sun, Y., Wang, D., Yan, J., Qiao, W., Wang, W., and Zhu, T., "Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes", Waste Management, (2013). http://dx.doi.org/10.1016/j.wasman.2013.07.018
  9. Palatsi, J., Laureni, M., Andr, M. V., Flotats, X., Nielsen, H. B., and Angelidaki, I., "Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors", Bioresource Technology, 100, pp. 4588-4596. (2009). https://doi.org/10.1016/j.biortech.2009.04.046
  10. Ministry of Environment, "2014 Waste production and disposal in Korea", pp. 174-324. (2015).
  11. Shin, H. S., "Anaerobic digestion treatment of food waste", Journal of the Korea Organic Resources Recycling Association, 8(2), pp. 7-13. (2000).

Cited by

  1. Comparison and Evaluation of Large-Scale and On-Site Recycling Systems for Food Waste via Life Cycle Cost Analysis vol.9, pp.12, 2017, https://doi.org/10.3390/su9122186