DOI QR코드

DOI QR Code

A study on the introduction of organic waste-to-energy incentive system(I): Precise monitoring of biogasification

유기성폐자원에너지 인센티브제도 도입방안 연구(I): 바이오가스화 정밀모니터링

  • Kwon, Jun-Hwa (Waste-to-Energy Research Division, National Institute of Environmental Research) ;
  • Moon, Hee-Sung (Waste-to-Energy Research Division, National Institute of Environmental Research) ;
  • Lee, Won-Seok (Waste-to-Energy Research Division, National Institute of Environmental Research) ;
  • Lee, Dong-Jin (Waste-to-Energy Research Division, National Institute of Environmental Research)
  • 권준화 (국립환경과학원 폐자원에너지연구과) ;
  • 문희성 (국립환경과학원 폐자원에너지연구과) ;
  • 이원석 (국립환경과학원 폐자원에너지연구과) ;
  • 이동진 (국립환경과학원 폐자원에너지연구과)
  • Received : 2021.11.24
  • Accepted : 2021.12.13
  • Published : 2021.12.30

Abstract

Biogasification is a technology that produces environmentally friendly fuel using methane gas generated in the process of stably decomposing and processing organic waste. Biogasification is the most used method for energy conversion of organic waste with high moisture content, and is a useful method for organic waste treatment following the prohibition of direct landfill (2005) and marine dumping (2013). Due to African Swine Fever (ASF), which recently occurred in Korea, recycling of wet feed is prohibited, and consumers such as dry feed and compost are negatively recognized, making it difficult to treat food waste. Accordingly, biogasification is attracting more attention for the treatment and recycling of food waste. Korea's energy consumption amounted to 268.41 106toe, ranking 9th in the world. However, it is an energy-poor country that depends on foreign imports for about 95.8% of its energy supply. Therefore, in Korea, the Renewable Energy Portfolio Standard (RPS) is being introduced. The domestic RPS system sets the weight of the new and renewable energy certificate (REC, Renewable energy certificate) of waste energy lower than that of other renewable energy. Therefore, an additional incentive system is required for the activation of waste-to-energy. In this study, the operation of an anaerobic digester that treats food waste, food waste Leachate and various organic wastes was confirmed. It was intended to be used as basic data for preparing the waste-to-energy incentive system through precise monitoring for a certain period of time. Four sites that produce biogas from organic waste and use them for power generation and heavy gas were selected as target facilities, and field surveys and sampling were conducted. Basic properties analysis was performed on the influent sample of organic waste and the effluent sample according to the treatment process. As a result of the analysis of the properties, the total solids of the digester influent was an average of 12.11%, and the volatile solids of the total solids were confirmed to be 85.86%. BOD and CODcr removal rates were 60.8% and 64.8%. The volatile fatty acids in the influent averaged 55,716 mg/L. It can be confirmed that most of the volatile fatty acids were decomposed and removed with an average reduction rate of 92.3% after anaerobic digestion.

바이오가스화는 유기성폐기물을 안정적으로 분해하여 처리하는 과정에서 발생하는 메탄(CH4)가스를 이용해 환경친화적인 연료를 생산하는 기술이다. 바이오가스화는 수분함량이 높은 유기성폐기물의 에너지화에 가장 많이 활용되는 방법이며, 직매립(2005) 및 해양투기(2013) 등의 금지에 따른 유기성폐기물 처리에 유용한 공법이다. 최근 국내에서 발병한 아프리카돼지열병(ASF, African Swine Fever)으로 습식사료화 재활용이 금지되고, 건조 사료화 및 퇴비화 등의 생산제품 수요처가 부정적으로 인식되면서 음식물류폐기물의 처리에 어려움을 겪고 있다. 이에, 음식물류폐기물의 처리 및 자원화를 위해 바이오가스화가 더욱 주목받고 있다. 우리나라 에너지소비 규모는 268.41 106toe에 이르며 세계 9위 수준이다. 하지만 공급에너지의 약 95.8 %를 해외수입에 의존하고 있는 에너지 빈곤 국가이다. 따라서 국내에서는 신·재생에너지 공급의무화제도(RPS, Renewable energy portfolio standard)를 도입하고 있다. 국내의 RPS 제도는 다른 신재생에너지와 비교하여 폐기물에너지의 신·재생에너지 공급인증서(REC, Renewable energy certificate)의 가중치를 낮게 설정하고 있다. 따라서 폐자원에너지의 활성화를 위한 추가적 인센티브 제도가 요구된다. 본 연구에서는 음식물류폐기물, 음폐수 및 다양한 유기성폐기물이 처리되는 혐기소화조의 운영방식을 알아보고, 일정 기간의 정밀모니터링을 통해 폐자원에너지 인센티브제도를 마련하는 기초자료로써 활용하고자 하였다. 유기성 폐기물로 바이오가스를 생산하여 발전과 중질가스로 활용하는 4개소를 대상시설로 선정하였고, 현장조사 및 시료채취를 실시하였다. 채취된 유기성폐기물의 유입물 시료와 처리공정에 따른 유출물 시료의 기초 성상분석을 수행하였다. 성상분석 결과, 소화조 유입물의 총 고형물은 평 균 12.11 %이며, 총 고형물 중 휘발성 고형물은 85.86 %로 확인되었다. BOD와 CODcr 제거율은 소화조의 유입·유출 대비 각각 60.8 %와 64.8 %로 나타났으며, 유입물의 휘발성지방산은 평균 55,716 mg/L로 나타났으며, 혐기소화 후 감소율이 평균 92.3 %로 대부분 분해되어 제거된 것을 확인할 수 있다.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립환경과학원의 지원을 받아 수행하였습니다.(NIER-2019-01-01-80)

References

  1. Ministry of Trade, Industry and Energy, "New& renewable energy white paper". (2020).
  2. Ministry of Environmen, "Current status of biogasification facilities for organic waste resources". (2017).
  3. World Energy Balances, IEA. (2016).
  4. Korea Energy Handbook, Korea energy management corporation p. 17. (2015).
  5. Sa, L., Oliveira, M. Cammarota, M. Matos, and Leitao, A. V. "Simultaneous analysis of carbohydrates and volatile fatty acids by HPLC for monitoring fermentative biohydrogen production", international journal of hydrogen energy, pp. 15177~15186. (2011).
  6. Khanal, S. K., Anaerobic biotechnology for bioenergy production principles and applications, Wiley-Blackwell, pp. 56~57. (2008).
  7. Chen, Y. J. and Cheng, K.S., "Creamer, Inhibition of anaerobic digestion process: a review", Journal of Bioresource Technology, 99, pp. 4044~4064. (2008). https://doi.org/10.1016/j.biortech.2007.01.057
  8. Hong-Wei, Y. and Brune, D.E.,"Anaerobic co-digestion of algal sludge and waste paper to produce methane", Journal of Bioresource Technology, 98(1), pp. 130~134. (2007). https://doi.org/10.1016/j.biortech.2005.11.010
  9. Siegert, I., and Banks, C., "The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors". (2005).
  10. National Biogas Strategy(Energigas Sverige), "National Biogas Strategy 2.0". (2018).
  11. Korea Gas Safety Corporation, Research on the "Establishment plan of proper quality standard of alternative natural gas for the generation of electricity, Korea". (2010).
  12. EBA, "European biomethane map infrastructure for biomethane production 2018". (2018).