• Title/Summary/Keyword: Biofuel production

Search Result 122, Processing Time 0.023 seconds

Extraction and Application of Bulk Enzymes and Antimicrobial Substance from Spent Mushroom Substrates

  • Lim, Seon-Hwa;Kwak, A Min;Min, Kyong-Jin;Kim, Sang Su;Kang, Hee Wan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.19-19
    • /
    • 2014
  • Pleurotus ostreatus, P. eryngii, and Flammulina velutipes are major edible mushrooms that account for over 89% of total mushroom production in Korea. Recently, Agrocybe cylindracea, Hypsizygus marmoreus, and Hericium erinaceu are increasingly being cultivated in mushroom farms. In Korea, the production of edible mushrooms was estimated to be 614,224 ton in 2013. Generally, about 5 kg of mushroom substrate is needed to produce 1 kg of mushroom, and consequently about 25 million tons of spent mushroom substrate (SMS) is produced each year in Korea. Because this massive amount of SMC is unsuitable for reuse in mushroom production, it is either used as garden fertilizer or deposited in landfills, which pollutes the environment. It is reasonably assumed that SMS includes different secondary metabolites and extracellular enzymes produced from mycelia on substrate. Three major groups of enzymes such as cellulases, xylanases, and lignin degrading enzymes are involved in breaking down mushroom substrates. Cellulase and xylanase have been used as the industrial enzymes involving the saccharification of biomass to produce biofuel. In addition, lignin degrading enzymes such as laccases have been used to decolorize the industrial synthetic dyes and remove environmental pollutions such as phenolic compounds. Basidiomycetes produce a large number of biologically active compounds that show antibacterial, antifungal, antiviral, cytotoxic or hallucinogenic activities. However, most previous researches have focused on therapeutics and less on the control of plant diseases. SMS can be considered as an easily available source of active compounds to protect plants from fungal and bacterial infections, helping alleviate the waste disposal problem in the mushroom industry and creating an environmentally friendly method to reduce plant pathogens. We describe extraction of lignocellulytic enzymes and antimicrobial substance from SMSs of different edible mushrooms and their potential applications.

  • PDF

Research Trend of Bio-oil Production from Biomass by using Fast Pyrolysis (바이오매스로부터 급속 열분해를 통한 바이오오일의 생산기술 연구동향)

  • Kim, Jae-Kon;Park, Jo Yong;Yim, Eui Soon;Ha, Jong Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.453-465
    • /
    • 2014
  • The paper provides a review on bio-oil production technology from biomass by using fast pyrolysis to use heating fuel, power fuel and transport fuel. One of the most promising methods for a small scale conversion of biomass into liquid fuels is fast pyrolysis. In fast pyrolysis, bio-oil is produced by rapidly heating biomass to intermediate temperature ($450{\sim}600^{\circ}C$) in the absence of any external oxygen followed by rapid quenching of the resulting vapor. Bio-oil can be produced in weight yield maximum 75 wt% of the original dry biomass and bio-oils typically contain 60-75% of the initial energy of the biomass. In this study, it is described focusing on the characterization of feedstock, production principle of bio-oil, bio-oil's property and it's application sector.

A Study on Fuel Quality Characteristics of F-T Diesel for Production of BTL Diesel (BTL 디젤 생산을 위한 F-T 디젤의 연료적 특성 연구)

  • Kim, Jae-Kon;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub;Lee, Sang-Bong;Lee, Yun-Je;Kang, Myung-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.450-458
    • /
    • 2012
  • In order to reduce the effects of greenhouse gas (GHG) emissions, the South Korean government has announced a special platform of technologies as part of an effort to minimize global climate change. To further this effort, the Korean government has pledged to increase low-carbon and carbon neutral resources for biofuel derived from biomass to replace fossil and to decrease levels of carbon dioxide. In general, second generation biofuel produced form woody biomass is expected to be an effective avenue for reducing fossil fuel consumption and greenhouse gas (GHG) emissions in road transport. It is important that under the new Korean initiative, pilot scale studies evolve practices to produce biomass-to-liquid (BTL) fuel. This study reports the quality characteristics of F-T(Fischer-Tropsch) diesel for production of BTL fuel. Synthetic F-Tdiesel fuel can be used in automotive diesel engines, pure or blended with automotive diesel, due to its similar physical properties to diesel. F-T diesel fuel was synthesized by Fischer-Tropsch (F-T) process with syngas($H_2$/CO), Fe basedcatalyst in low temperature condition($240^{\circ}C$). Synthetic F-T diesel with diesel compositions after distillation process is consisted of $C_{12}{\sim}C_{23+}$ mixture as a kerosine, diesel compositions of n-paraffin and iso-paraffin compounds. Synthetic F-T diesel investigated a very high cetane number, low aromatic composition and sulfur free level compared to automotive diesel. Synthetic F-T diesel also show The wear scar of synthetic F-T diesel show poor lubricity due to low content of sulfur and aromatic compounds compared to automotive diesel.

Correlation Analysis on $CO_2$ Emission and Cost of Energy Resources and Life Cycle Assessment (에너지자원의 이산화탄소 배출량과 비용의 상관관계 분석과 전과정평가)

  • Kim, Heetae;Kim, Eun Chul;Ahn, Tae Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.153-153
    • /
    • 2010
  • The world is moving towards a post-carbon society and needs clean and renewable energy for sustainable development. There are many methodological approaches which are helping this shift based on analyzed data about energy resources and which focus on limited types of energy including liquid fossil, solid fossil, gaseous fossil, and biomass (e.g. IPCC Guidelines, ISO 14064-1, WRI Protocol, etc.). We should also consider environmental impact (e.g. greenhouse gas emissions, water use, etc.) and the economic cost of the renewable energy to make a better decision. Recently, researchers have addressed the environmental impact of new technologies which include photovoltaics, wind turbines, hydroelectric power, and biofuel. In this work, we analyze the environmental impact with a carbon emission factor to present a correlation between $CO_2$ emission and the cost of energy resources standardized by the energy output. In addition, we reviewed Life Cycle Assessment (LCA) as another methodology. Researchers who are studying energy systems have ignored the impacts of entire energy systems, e.g. the extraction and processing of fossil fuels. In power sector, the assessment should include extraction, processing, and transportation of fuels, building of power plants, production of electricity, and waste disposal. Therefore LCA could be more suitable tool for energy cost and environmental impact estimation.

  • PDF

Optimization for Scenedesmus obliquus Cultivation: the Effects of Temperature, Light Intensity and pH on Growth and Biochemical Composition

  • Zhang, Yonggang;Ren, Li;Chu, Huaqiang;Zhou, Xuefei;Yao, Tianming;Zhang, Yalei
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.614-620
    • /
    • 2019
  • Microalgae have been explored as potential host species for biofuel production. Environmental factors affect algal growth and cellular composition. The effects of several key environmental factors, such as temperature, light, and pH of the medium on the growth and biochemical composition of Scenedesmus obliquus were investigated in this study. The highest growth rate of microalgae was observed at an optimal temperature of 25℃, 150 μmol/(m2·s) light intensity, and pH 10.0. The biochemical composition analysis revealed that the carbohydrate content decreased at lower (20℃) or higher temperature (35℃), whereas the protein and lipid contents increase at these temperatures. The fluctuation of light intensity significantly affected the contents of protein, carbohydrate, and lipid. The protein levels varied greatly when the pH of the medium was below 7.0. The carbohydrate and lipid contents significantly increased at pH above 7.0.

Potential of the kNN Method for Estimation and Monitoring off-Reserve Forest Resources in Ghana

  • Kutzer, Christian
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.3
    • /
    • pp.151-154
    • /
    • 2008
  • Dramatic price increases of fossil fuels and the economic development of emerging nations accelerates the transformation of forest lands into monocultures, e.g. for biofuel production. On this account, cost efficient methods to enable the monitoring of land resources has become a vital ambition. The application of remote sensing techniques has become an integral part of forest attribute estimation and mapping. The aim of this study was to evaluate the potentials of the kNN method by combining terrestrial with remotely sensed data for the development of a pixel-based monitoring system for the small scaled mosaic of different land use types of the off-reserve forests of the Goaso forest district in Ghana, West Africa. For this reason, occurrence and distribution of land use types like cocoa and non-timber forest resources, such as bamboo and raphia palms, were estimated, applying the kNN method to ASTER satellite data. Averaged overall accuracies, ranging from 79% for plantain, to 83% for oil palms, were found for single-attribute classifications, whereas a multi-attribute approach showed overall accuracies of up to 70%. Values of k between 3 and 6 seem appropriate for mapping bamboo. Optimisation of spectral bands improves results considerably.

  • PDF

Comparison of Biomass and Oil Content of Chlorella sp., Nannochloris sp., and Botryococcus braunii in the Mixotrophic Conditions using Glycerol (글리세롤을 이용한 복합영양소에서 Chlorella sp., Nannochloris sp.와 Botryococcus braunii 의 바이오매스 생산량과 오일 함유량 비교)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.469-476
    • /
    • 2014
  • The focus of this study was to observe the growth of Chlorella sp., Nannochloris sp., and Botryococcus braunii under mixotrophic conditions (i.e., added glycerol) with the aim of increasing the growth of biomass and algae oil content. A significant growth of biomass was obtained when grown in glycerol rich environment comparing to autotrophic conditions. 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAG in Botryococcus braunii was reached in the growth medium with 10 g/L glycerol and Chlorella sp., Nannochloris sp. with 2 g/L glycerol. The content of saturated fatty acids of Chlorella sp., Nannochloris sp., and Botryococcus braunii was found to be 34.94, 14.23 and 13.39%, and the amount of unsaturated fatty acids was 65.06, 85.78 and 86.61% of total fatty acids, respectively. The fatty acid profiles of the oil for the culture possibility met the necessary requirements and are, therefore, promising resource for biofuel production.

Nitrogen Adsorption Analysis of Wood Saccharification Residues

  • Yang, Han-Seung;Tze, William Tai Yin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.232-242
    • /
    • 2017
  • The objective of this study was to examine changes in the porosity and internal structure of wood as it goes through the process of saccharification (extraction of fermentable sugars). This study also examined the use of different drying methods to prepare samples for characterization of internal pores, with particular emphasis on the partially disrupted cell wall. Aspen wood flour samples after dilute acid pretreatment followed by enzymatic hydrolysis were examined for nitrogen adsorption. The resulting isotherms were analyzed for surface area, pore size distribution, and total pore volume. Results showed that freeze drying (with sample pre-freezing) maintains the cell wall structure, allowing for examination of saccharification effects. Acid pretreatment (hemicellulose removal) doubled the surface area and tripled the total volume of pores, which were mostly 10-20 nm wide. Subsequent enzymatic hydrolysis (cellulose removal) caused a 5-fold increase in the surface area and a ~ 11-fold increase in the total volume of pores, which ranged from 5 to 100 nm in width. These results indicate that nitrogen adsorption analysis is a feasible technique to examine the internal pore structure of lignocellulosic residues after saccharification. The information on the pore structure will be useful when considering value-adding options for utilizing the solid waste for biofuel production.

Efficient Phosphinothricin Mediated Selection of Callus Derived from Brachypodium Mature Seed

  • Jeon, Woong Bae;Lee, Man Bo;Kim, Dae Yeon;Hong, Min Jeong;Lee, Yong Jin;Seo, Yong Weon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • Brachypodium distachyon is rapidly emerged in biological study and has been currently used as a model system for genetics and functional studies for crop improvement and biofuel production. Phosphinothricin (PPT) has been widely used as a selectable agent, which raises ammonium content and induces toxicity in non-transformed plant cells. However PPT selection is not much effective on Brachypodium callus consequently reducing transformation efficiency. In order to identify the efficient conditions of PPT selection, calli obtained from mature seeds of Brachypodium (PI 254867) were cultured on the callus inducing medium (CIM) or regeneration medium (ReM) containing serial dilutions of the PPT (0, 2, 5, 10, and 15 mg/l) in dark or light condition. Callus growth and ammonium content of each treatment were measured 2 weeks after the treatment. Although callus growth and ammonium content did not show much difference in CIM, slow callus growth and increased ammonium accumulation were found in ReM. No significant difference of ammonium accumulation in response to PPT was found between dark and light conditions. In order to identify major factors affecting increased ammonium accumulation, callus was cultured on the media in combined with phytohormones (2,4-D or kinetin) and carbon sources (sucrose or maltose) containing with PPT (5 mg/l). The highest ammonium content in callus was found in the kinetin and maltose media.

Crystal Structure and Molecular Mechanism of Phosphotransbutyrylase from Clostridium acetobutylicum

  • Kim, Sangwoo;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1393-1400
    • /
    • 2021
  • Acetone-butanol-ethanol (ABE) fermentation by the anaerobic bacterium Clostridium acetobutylicum has been considered a promising process of industrial biofuel production. Phosphotransbutyrylase (phosphate butyryltransferase, PTB) plays a crucial role in butyrate metabolism by catalyzing the reversible conversion of butyryl-CoA into butyryl phosphate. Here, we report the crystal structure of PTB from the Clostridial host for ABE fermentation, C. acetobutylicum, (CaPTB) at a 2.9 Å resolution. The overall structure of the CaPTB monomer is quite similar to those of other acyltransferases, with some regional structural differences. The monomeric structure of CaPTB consists of two distinct domains, the N- and C-terminal domains. The active site cleft was formed at the interface between the two domains. Interestingly, the crystal structure of CaPTB contained eight molecules per asymmetric unit, forming an octamer, and the size-exclusion chromatography experiment also suggested that the enzyme exists as an octamer in solution. The structural analysis of CaPTB identifies the substrate binding mode of the enzyme and comparisons with other acyltransferase structures lead us to speculate that the enzyme undergoes a conformational change upon binding of its substrate.