Browse > Article
http://dx.doi.org/10.4014/jmb.2109.09036

Crystal Structure and Molecular Mechanism of Phosphotransbutyrylase from Clostridium acetobutylicum  

Kim, Sangwoo (School of Life Sciences, BK21 FOUR KNU Creative BioSesearch Group, Kyungpook National University)
Kim, Kyung-Jin (School of Life Sciences, BK21 FOUR KNU Creative BioSesearch Group, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.10, 2021 , pp. 1393-1400 More about this Journal
Abstract
Acetone-butanol-ethanol (ABE) fermentation by the anaerobic bacterium Clostridium acetobutylicum has been considered a promising process of industrial biofuel production. Phosphotransbutyrylase (phosphate butyryltransferase, PTB) plays a crucial role in butyrate metabolism by catalyzing the reversible conversion of butyryl-CoA into butyryl phosphate. Here, we report the crystal structure of PTB from the Clostridial host for ABE fermentation, C. acetobutylicum, (CaPTB) at a 2.9 Å resolution. The overall structure of the CaPTB monomer is quite similar to those of other acyltransferases, with some regional structural differences. The monomeric structure of CaPTB consists of two distinct domains, the N- and C-terminal domains. The active site cleft was formed at the interface between the two domains. Interestingly, the crystal structure of CaPTB contained eight molecules per asymmetric unit, forming an octamer, and the size-exclusion chromatography experiment also suggested that the enzyme exists as an octamer in solution. The structural analysis of CaPTB identifies the substrate binding mode of the enzyme and comparisons with other acyltransferase structures lead us to speculate that the enzyme undergoes a conformational change upon binding of its substrate.
Keywords
Clostridium acetobutylicum; phosphotransbutyrylase; butyryl-CoA; butyrate metabolism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lawrence SH, Luther KB, Schindelin H, Ferry JG. 2006. Structural and functional studies suggest a catalytic mechanism for the phosphotransacetylase from Methanosarcina thermophila. J. Bacteriol. 188: 1143-1154.   DOI
2 Vagin A, Teplyakov A. 2010. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66: 22-25.   DOI
3 Yoshida Y, Sato M, Nonaka T, Hasegawa Y, Kezuka Y. 2019. Characterization of the phosphotransacetylase-acetate kinase pathway for ATP production in Porphyromonas gingivalis. J. Oral Microbiol. 11: 1588086.   DOI
4 Speakman HB. 1920. Gas production during the acetone and butyl alcohol fermentation of starch. J. Biol. Chem. 43: 401-411.   DOI
5 Chen VB, Arendall WB, 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol Crystallogr. 66: 12-21.   DOI
6 Millat T, Janssen H, Thorn GJ, King JR, Bahl H, Fischer R-J, et al. 2013. A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicumin phosphate-limited continuous cultures. Appl. Microbiol. Biotechnol. 97: 6451-6466.   DOI
7 Millat T, Janssen H, Bahl H, Fischer RJ, Wolkenhauer O. 2013. Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture. Microb. Biotechnol. 6: 526-539.   DOI
8 Grimmler C, Janssen H, Kraube D, Fischer R-J, Bahl H, Durre P, et al. 2011. Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. J. Mol. Microbiol. Biotechnol. 20: 1-15.   DOI
9 Saini M, Wang ZW, Chiang C-J, Chao Y-P. 2014. Metabolic engineering of Escherichia coli for production of butyric acid. J. Agric. Food Chem. 62: 4342-4348.   DOI
10 Xu QS, Jancarik J, Lou Y, Kuznetsova K, Yakunin AF, Yokota H, et al. 2005. Crystal structures of a phosphotransacetylase from Bacillus subtilis and its complex with acetyl phosphate. J. Struct. Funct. Genomics 6: 269-279.   DOI
11 Iyer PP, Lawrence SH, Luther KB, Rajashankar KR, Yennawar HP, Ferry JG, et al. 2004. Crystal structure of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila. Structure (London, England : 1993) 12: 559-567.   DOI
12 Amador-Noguez D, Brasg IA, Feng X-J, Roquet N, Rabinowitz JD. 2011. Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum. Appl. Environ. Microbiol. 77: 7984-7997.   DOI
13 Steinbuchel A, Lutke-Eversloh T. 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16: 81-96.   DOI
14 Wiesenborn DP, Rudolph FB, Papoutsakis ET. 1989. Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis. Appl. Environ. Microbiol. 55: 317-322.   DOI
15 Lutke-Eversloh T, Fischer A, Remminghorst U, Kawada J, Marchessault RH, Bogershausen A, et al. 2002. Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nat. Mater. 1: 236-240.   DOI
16 Xu QS, Shin DH, Pufan R, Yokota H, Kim R, Kim SH. 2004. Crystal structure of a phosphotransacetylase from Streptococcus pyogenes. Proteins 55: 479-481.   DOI
17 Jones DT, Woods DR. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50: 484-524.   DOI
18 Matta-el-Ammouri G, Janati-Idrissi R, Junelles AM, Petitdemange H, Gay R. 1987. Effects of butyric and acetic acids on acetone-butanol formation by Clostridium acetobutylicum. Biochimie 69: 109-115.   DOI
19 Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326.   DOI
20 Matthews BW. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497.   DOI
21 Papoutsakis E, Bennett G. 1997. Molecular regulation and metabolic engineering of solvent production by Clostridium acetobutylicum. Bioprocess Technol. 24: 253-280.
22 Jones SW, Paredes CJ, Tracy B, Cheng N, Sillers R, Senger RS, et al. 2008. The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol. 9: R114.   DOI
23 Janssen H, Doring C, Ehrenreich A, Voigt B, Hecker M, Bahl H, et al. 2010. A proteomic and transcriptional view of acidogenic and solventogenic steady-state cells of Clostridium acetobutylicum in a chemostat culture. Appl. Microbiol. Biotechnol. 87: 2209-2226.   DOI
24 Cary JW, Petersen DJ, Papoutsakis ET, Bennett GN. 1988. Cloning and expression of Clostridium acetobutylicum phosphotransbutyrylase and butyrate kinase genes in Escherichia coli. J. Bacteriol. 170: 4613-4618.   DOI
25 Lutke-Eversloh T, Steinbuchel A. 2004. Microbial polythioesters. Macromol. Biosci. 4: 166-174.
26 Yu J-L, Xia X-X, Zhong J-J, Qian Z-G. 2014. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnol. Bioeng. 111: 2580-2586.   DOI
27 Lawrence SH, Luther KB, Schindelin H, Ferry JG. 2006. Structural and Functional Studies Suggest a Catalytic Mechanism for the Phosphotransacetylase from Methanosarcina thermophila. J. Bacteriol. 188: 1143-1154.   DOI
28 Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132.   DOI
29 Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol Crystallogr. 67: 355-367.   DOI
30 Laskowski RA, MacArthur MW, Moss DS, Thornton JM. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26: 283-291.   DOI
31 Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372: 774-797.   DOI
32 Zhang Y, Yu M, Yang ST. 2012. Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum. Biotechnol. Progress 28: 52-59.   DOI
33 Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.   DOI
34 Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44: W344-350.   DOI