• Title/Summary/Keyword: Biodiesel yield

Search Result 74, Processing Time 0.026 seconds

Optimized biodiesel yield in a hydrodynamic cavitation reactor using response surface methodology

  • Neeraj Budhraja;R.S. Mishra
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.233-241
    • /
    • 2022
  • Biodiesel is a non-polluting and non-toxic energy source that can replace conventional diesel. However, the higher production cost and raw material scarcity became challenges that obstruct the commercialization of biodiesel production. In the current investigation, fried cooking oil is used for biodiesel production in a hydrodynamic cavitation reactor, thus enhancing raw material availability and helping better waste oil disposal. However, due to the cavitation effect inside the reactor, the hydrodynamic cavitation reactor can give biodiesel yield above 98%. Thus, the use of orifice plates (having a different number of holes for cavitation) in the reactor shows more than 90% biodiesel yield within 10 mins of a time interval. The effects of rising temperature at different molar ratios are also investigated. The five-hole plate achieves the highest yield for a 4.5:1 molar ratio at 65℃. And the similar result is predicted by the response surface methodology model; however, the optimized yield is obtained at 60℃. The investigation will help understand the effect of hydrodynamic cavitation on biodiesel yield at different molar ratios and elevated temperatures.

Investigating production parameters and impacts of potential emissions from soybean biodiesel stored under different conditions

  • Ayoola, Ayodeji Ayodele;Adeniyi, David Olalekan;Sanni, Samuel Eshorame;Osakwe, Kamsiyonna Ikenna;Jato, Jennifer Doom
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 2018
  • Biodiesel production parameters and the impact analysis of the potential emissions from both soybean biodiesel and washing water stored in three different environmental conditions were investigated. The effects of the reaction temperature, methanol/oil mole ratio and catalyst concentration on biodiesel yield were considered. And the results showed optimum biodiesel yield of 99% obtained at $54^{\circ}C$, 7 methanol/oil mole ratio and 0.4 wt/wt % catalyst concentration. The potential emissions from both the biodiesel produced and washing water stored (for six weeks) in refrigerator (${\leq}10^{\circ}C$), vacuum (50 kPa) and direct exposure to atmosphere were identified and quantified. Impact analysis of the emissions involved their categorization into: terrestrial acidification, freshwater eutrophication, human toxicity, terrestrial ecotoxicity, climate change and freshwater ecotoxicity. Freshwater ecotoxicity category had the most pronounced negative impact of the potential emissions with $5.237710^{-2}kg\;1,4-DB\;eq$. emissions in Atmosphere, $4.702610^{-2}kg\;1,4-DB\;eq$. emissions in Refrigerator and $3.966110^{-2}kg\;1,4-DB\;eq$. emissions in Vacuum. Climate change had the least effect of the emissions with $6.214106^{-6}kg\;CO_2\;eq$. in Atmosphere, $3.9310^{-6}kg\;CO_2\;eq$. in Refrigerator and $1.6710^{-6}kg\;CO_2\;eq$. in Vacuum. The study showed that the order of preference of the storage environments of biodiesel is vacuum environment, refrigerated condition and exposure to atmosphere.

In situ Transesterification/Reactive Extraction of Castor Bean Seeds Assisted by Flying Jet Plasma for Biodiesel Production

  • Elsheikh, Yasir A.;Abdul-Majeed, Wameath S.;Nasir, Qazi;Al-Rahbi, Balaqis;Al-Subhi, Noor;Mahmoud, Mohamed A.;AAl-Thani, Ghanim S.
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.538-544
    • /
    • 2022
  • One of the most exciting areas for the development of alternative fuels is the production of biodiesel. To reduce the cost of biodiesel production, in situ trans-esterification has been introduced to simplify the production process by enabling extraction and trans-esterification to occur at a single stage in the presence of a catalyst. In this study, we investigated the feasibility of using non-corrosive and environmentally receptive flying jet plasma as an alternative catalytic route for in situ tran-sesterification of castor bean seeds (CBS). Upon optimizing the reaction conditions, it is elucidated that applying a low ratio of methanol to seeds (≤6:1) has resulted in hindering the in situ trans-esterification and leading to insignificant conversion. The yield of esters has increased from 80.5% to 91.7% as the molar ratio rose from 9:1 to 12:1. Excess alcohol beyond the ratio of 15:1 was shown to have a negative impact on the yield of the produced esters, attributed to an increase in the biodiesel portion prone to dissolving in the co-product (glycerol). An increase in the reaction bulk temperature from 40 to 55 ℃ led to a higher ester content by 50%. Further increases in the bulk temperature beyond 55 ℃ did not affect yields. Regarding the reaction period, the results have shown that 3 h of reaction is adequate for a higher biodiesel yield. The quality of the biodiesel obtained has demonstrated that all physicochemical properties meet the ASTM D6751 specifications.

Effects of Properties of Raw Materials on Biodiesel Production (바이오디젤 생산에 미치는 원료 특성의 영향)

  • Jeong, Gwi-Taek;Park, Seok-Hwan;Park, Jae-Hee;Park, Don-Hee
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.335-339
    • /
    • 2008
  • Biodiesel is an alternative and renewable energy source, which is hoped to reduce global dependence on petroleum and environmental problem. Biodiesel produced from a variety of oil sources such as vegetable oil, animal fat and waste oils, and has properties similar to those associated with petro-diesel, including cetane number, volumetric heating value, flash point, viscosity and so on. In this study, we investigate the effect of quality of raw materials on alkali-catalyzed transesterification for producing of biodiesel. The increase of content of free fatty acid and water in oil were caused the sharp decrease of conversion yield. Also, the low purity of methanol in reactant was inhibited the reaction rate. In the case of addition of sodium sulfate as absorbent to prepare catalyst solution, the content of fatty acid methyl ester in product was increased more about 1.6% than that of control. However, the addition of zeolite, sodium chloride and sodium sulfate as absorbent in reactant to remove water generated from reaction did not show any enhancement in the reaction yield. This result may provide useful information with regard to the choice and preparation of raw materials for more economic and efficient biodiesel production.

Evaluation of Biodiesel Production Systems and Factors Affecting Product Yield (바이오디젤의 생산 공정 비교 및 생성물 수율에 미치는 인자들)

  • Lee, Jong-Man;Lee, Jae-Heung;Cho, Nam-Jun
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.183-192
    • /
    • 2011
  • In recent years there has been an increasing focus on global warming and the exhaustion of resources caused by the heavy consumption of fossil fuels. In order to resolve these issues, biomass has gained much attention as a source of renewable energy. One area of particular interest has been the production of biodiesel. The biodiesel produced by the transesterification of vegetable oils, animal fats and waste cooking oils is expected to be one of the eco-friendly biomass-based alternatives to fossil fuels. This paper reviews some of the recent findings for the effective biodiesel production system, together with several factors affecting the biodiesel yield.

  • PDF

Yield and Characterization of Various Biodiesel from Vegetable Oils and Animal Fats (동·식물성 유지를 이용한 바이오디젤 생산에 관한 연구)

  • Lee, Tae-Sung;Lee, Yong-Hwa;Kim, Kwang-Soo;Kim, Wook;Kim, Kwan-Su;Jang, Young-Seok;Park, Kwang-Geun
    • New & Renewable Energy
    • /
    • v.8 no.4
    • /
    • pp.30-37
    • /
    • 2012
  • Biodiesel was produced by "transesterification" of vegetable oils and animal fats as an alternative to petroleum diesel. The research analysed the fuel characteristics of biodiesel, the yield of by-products and biodiesel, using several vegetable oils - rapeseed oil, camellia oil, peanut oil, sesame oil, perilla oil, palm oil, olive oil, soybean oil, sunflower oil and animal fats such as lard, tallow, and chicken fat. The results showed the yields of biodiesel made from the vegetable oils and animal fats were $90.8{\pm}1.4{\sim}96.4{\pm}0.9%$ and $84.9{\pm}1.1{\sim}89.6{\pm}1.5%$ respectively. Production rates and oxidation characteristics were different depending on the fats applied.

Prospects of Insect Biodiesel Production in Korea: A review (곤충 유래 바이오디젤의 국내 생산 가능성에 관한 고찰)

  • Park, Jo Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1399-1409
    • /
    • 2019
  • Biodiesel is a renewable and environmentally friendly liquid biofuel for transportation. Insect is considered as a new valuable biomass to convert into biodiesel. In particular, BSF(Black Soldier Fly) containing high fat is a renewable source of biodiesel. Biodiesel drived BSF has high concentration of saturated fatty acid methyl ester and low concentration of polyunsaturted fatty acid methyl ester which makes it potentially an ideal substrate for producing excellent quality biodiesel. Most of the fuel properties of BSF biodiesel were met the requirements of standard EN 14214. BSF have a higher lipid yield and biodiesel productivity as compared to microalgae and vegetable oils. This review paper includes the overall summary and compilation of the insect research conducted on biodiesel production and includes the BSF biodiesel properties.

Transesterification of Jatropha Oil over Ceria-Impregnated ZSM-5 for the Production of Bio-Diesel

  • Bhagiyalakshmi, Margandan;Vinoba, Mari;Grace, Andrews Nirmala
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3059-3064
    • /
    • 2013
  • In this study transesterification of Triglycerides (TG) from Jatropha curcas oil (JCO) with methanol for production of biodiesel was investigated over cerium impregnated ZSM-5 catalysts. NaZSM-5 was synthesized in an alkaline medium and impregnated with cerium oxide by wet method using cerium nitrate as a source for cerium. They were characterized by X-ray diffraction (XRD), Thermogravimeteric analysis (TGA), $CO_2$-temperature programmed desorption, and $N_2$ adsorption/desorption analysis. XRD analysis showed decrease in intensity of the patterns with the increase in the ceria loading but crystallization of ceria to larger size is an evident for 10 and 15% loading. The optimal yield of transesterification process was found to be 90% under the following conditions: oil to methanol molar ratio: 1:12; temperature: $60^{\circ}C$; time: 1 h; catalyst: 5 wt %. Here the yield of fatty acid methyl ester (FAME) was calculated through $^1H$ NMR analysis. The investigation on catalyst loading, temperature, time and reusability illustrated that these ceria impregnated NaZSM-5's were found to be selective, recyclable and could yield biodiesel at low temperature with low methanol to oil ratio due to the presence of both Lewis and Bronsted basicity. Hence, from the above study it is concluded that ceria impregnated ZSM-5 could be recognized as a potential catalysts for biodiesel production in industrial processes.

Optimization and characterization of biodiesel produced from vegetable oil

  • Mustapha, Amina T.;Abdulkareem, Saka A.;Jimoh, Abdulfatai;Agbajelola, David O.;Okafor, Joseph O.
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.147-163
    • /
    • 2013
  • The world faces several issues of energy crisis and environmental deterioration due to over-dependence on single source of which is fossil fuel. Though, fuel is needed as ingredients for industrial development and growth of any country, however the fossil fuel which is a major source of energy for this purpose has always been terrifying thus the need for alternative and renewable energy sources. The search for alternative energy sources resulted into the acceptance of a biofuel as a reliable alternative energy source. This work presents the study of optimization of process of transesterification of vegetable oil to biodiesel using NaOH as catalyst. A $2^4$ factorial design method was employed to investigate the influence of ratio of oil to methanol, temperature, NaOH concentration, and transesterification time on the yield of biodiesel from vegetable oil. Low and high levels of the key factors considered were 4:1 and 6:1 mole ratio, 30 and $60^{\circ}C$ temperatures, 0.5 and 1.0 wt% catalyst concentration, and 30 and 60 min reaction time. Results obtained revealed that oil to methanol molar ratio of 6:1, tranesetrification temperature of $60^{\circ}C$, catalyst concentration of 1.0wt % and reaction time of 30 min are the best operating conditions for the optimum yield of biofuel from vegetable oil, with optimum yield of 95.8%. Results obtained on the characterizzation of the produced biodiesel indicate that the specific gravity, cloud point, flash point, sulphur content, viscosity, diesel index, centane number, acid value, free glycerine, total glycerine and total recovery are 0.8899, 4, 13, 0.0087%, 4.83, 25, 54.6. 0.228mgKOH/g, 0.018, 0.23% and 96% respectively. Results also indicate that the qualities of the biodiesel tested for are in conformity with the set standard. A model equation was developed based on the results obtained using a statistical tool. Analysis of variance (ANOVA) of data shows that mole ratio of ground nut oil to methanol and transesterification time have the most pronounced effect on the biodiesel yield with contributions of 55.06% and 9.22% respectively. It can be inferred from the results various conducted that vegetable oil locally produced from groundnut oil can be utilized as a feedstock for biodiesel production.

Biodiesel Production Using a Mixture of Immobilized Rhizopus oryzae and Candida rugosa Lipases

  • Lee, Dong-Hwan;Kim, Jung-Mo;Shin, Hyun-Yong;Kang, Seong-Woo;Kim, Seung-Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.522-525
    • /
    • 2006
  • Biodiesel conversion from soybean oil reached a maximum of 70% at 18 h using immobilized 1,3-specific Rhizopus oryzae lipase alone. Biodiesel conversion failed to reach 20% after 30 h when immobilized nonspecific Candida rugosa lipase alone was used. To increase the biodiesel production yield, a mixture of immobilized 1,3-specific R. oryzae lipase and nonspecific C. rugosa lipase was used. Using this mixture a conversion of greater than 99% at 21 h was attained. When the stability of the immobilized lipases mixture was tested, biodiesel conversion was maintained at over 80% of its original conversion after 10 cycles.