Browse > Article

Biodiesel Production Using a Mixture of Immobilized Rhizopus oryzae and Candida rugosa Lipases  

Lee, Dong-Hwan (Department of Chemical and Biological Engineering, Korea University)
Kim, Jung-Mo (Department of Chemical and Biological Engineering, Korea University)
Shin, Hyun-Yong (Department of Chemical and Biological Engineering, Korea University)
Kang, Seong-Woo (Department of Chemical and Biological Engineering, Korea University)
Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.6, 2006 , pp. 522-525 More about this Journal
Abstract
Biodiesel conversion from soybean oil reached a maximum of 70% at 18 h using immobilized 1,3-specific Rhizopus oryzae lipase alone. Biodiesel conversion failed to reach 20% after 30 h when immobilized nonspecific Candida rugosa lipase alone was used. To increase the biodiesel production yield, a mixture of immobilized 1,3-specific R. oryzae lipase and nonspecific C. rugosa lipase was used. Using this mixture a conversion of greater than 99% at 21 h was attained. When the stability of the immobilized lipases mixture was tested, biodiesel conversion was maintained at over 80% of its original conversion after 10 cycles.
Keywords
biodiesel; Rhizopus oryzae lipase; Candida rugosa lipase; immobilization; reuse;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 24  (Related Records In Web of Science)
Times Cited By SCOPUS : 22
연도 인용수 순위
1 Krawczyk, T. (1996) Biodiesel-alternative fuel makes inroads but hurdles remain. Inform 7: 801-829
2 Murty, V. R., J. Bhat, and P. K. A. Muniswaran (2002) Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnol. Bioprocess Eng. 7: 57-66   DOI   ScienceOn
3 Shimada, Y., Y. Watanabe, A. Sugihara, and Y. Tominaga (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal., B Enzym. 17: 133-142   DOI   ScienceOn
4 Kaieda, M., T. Samukawa, A. Kondo, and H. Fukuda (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J. Biosci. Bioeng. 91: 12-15   DOI
5 Samukawa, T., M. Kaieda, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, and H. Fukuda (2000) Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. J. Biosci. Bioeng. 90: 180-183
6 Soumanou, M. M. and U. T. Bornscheuer (2003) Lipasecatalyzed alcoholysis of vegetable oils. Eur. J. Lipid Sci. Technol. 105: 656-660   DOI   ScienceOn
7 Yang, J.-S., G.-J. Jeon, B.-K. Hur, and J.-W. Yang (2005) Enzymatic methanolysis of castor oil for the synthesis of methyl ricinoleate in a solvent-free medium. J. Microbiol. Biotechnol. 15: 1183-1188   과학기술학회마을
8 Matsumoto, T., S. Takahashi, M. Kaieda, M. Ueda, A. Tanaka, H. Fukuda, and A. Kondo (2001) Yeast wholecell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl. Microbiol. Biotechnol. 57: 515-520   DOI
9 Lara Pizarro, A. V. and E. Y. Park (2003) Lipasecatalyzed production of biodiesel fuel from vegetable oils contained in waste activated bleaching earth. Process Biochem. 38: 1077-1082   DOI   ScienceOn
10 Matori, M., T. Asahara, and Y. Ota (1991) Positional specificity of microbial lipases. J. Ferment. Bioeng. 72: 397-398   DOI   ScienceOn
11 Hwang, S. and I.-S. Ahn (2005) Stability analysis of Bacillus stearothermopilus L1 lipase fused with a cellulosebinding domain. Biotechnol. Bioprocess Eng. 10: 329-333   과학기술학회마을   DOI   ScienceOn
12 Iso, M., B. Chen, M. Eguchi, T. Kudo, and S. Shrestha (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J. Mol. Catal., B Enzym. 17: 157-165   DOI   ScienceOn
13 Kaieda, M., T. Samukawa, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, F. Nomoto, K. Ohtsuka, E. Izumoto, and H. Fukuda (1999) Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water- containing system without and organic solvent. J. Biosci. Bioeng. 88: 627-631   DOI   ScienceOn
14 Shimada, Y., Y. Watanabe, T. Samukawa, A. Sugihara, H. Noda, H. Fukuda, and Y. Tominaga (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J. Am. Oil Chem. Soc. 76: 789-793   DOI
15 Ban, K., M. Kaieda, T. Matsumoto, A. Kondo, and H. Fukuda (2001) Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J. 8: 39-43   DOI   ScienceOn
16 Balcao, V. M., A. L. Paiva, and F. X. Malcata (1996) Bioreactors with immobilized lipases: state of the art. Enzyme Microb. Technol. 18: 392-416   DOI   ScienceOn
17 Noureddini, H., X. Gao, and R. S. Philkana (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 96: 769-777   DOI   ScienceOn
18 Muniyappa, P. R., S. C. Brammer, and H. Noureddini (1996) Improved conversion of plant oils and animal fats into biodiesel and co-product. Bioresour. Technol. 56: 19-24   DOI   ScienceOn
19 Park, S.-C., W.-J. Chang, S.-M. Lee, Y.-J. Kim, and Y.-M. Koo (2005) Lipase-catalyzed transesterification in several reaction systems: an application of room temperature ionic liquids for bi-phasic production of n-butyl acetate. Biotechnol. Bioprocess Eng. 10: 99-102   과학기술학회마을   DOI   ScienceOn