• 제목/요약/키워드: Biocompatible Polymer

검색결과 116건 처리시간 0.023초

Successful Carapace Puncture Wound Repair with Polymethyl Methacrylate (PMMA) in an Amur Softshell Turtle (Pelodiscus maackii)

  • Ha, Minjong;Lee, Do Na;Ahmed, Sohail;Han, Janghee;Yeon, Seong-Chan
    • 한국임상수의학회지
    • /
    • 제39권4호
    • /
    • pp.185-191
    • /
    • 2022
  • An Amur softshell turtle with multiple shell injuries was admitted to the Seoul Wildlife Center on 19 May 2021. The most severe lesion was a puncture wound requiring urgent closure. In addition to routine supportive therapy, the damaged shell was patched with biocompatible polymethyl methacrylate (PMMA) materials (bone cement and dental acrylic) and fiberglass. Despite a few methods to repair the carapace or plastron of hard-shelled turtles, shell repair in the Amur softshell turtle has rarely been reported. This paper reports the repair process of a puncture wound in the carapace of a softshell turtle using polymethyl methacrylate (PMMA). PMMA is a biocompatible acrylic polymer that forms a tight structure that holds the implant against tissue defects, such as skin, bones, and dentures. Fiberglass, a preferred fiber in various medical fields, was used with PMMA to provide extra strength and waterproof capability. After the procedure, there were no signs of edema, inflammation, bleeding, skin discoloration, or any other complications. Accordingly, this can be a method of choice in softshell turtles using biocompatible materials to cover the lesion in the carapace and provide appropriate wound management, supportive therapy, and a suitable course of antibiotics considering all other circumstances.

생체적합성과 생분해성을 갖는 Polypeptide Copolymer의 합성과 물성에 관한 연구(II) (Synthesis and Physical Properties of Biocompatible and Biodegradable Polypeptide Copolymers(II))

  • 강인규;권대룡
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권3호
    • /
    • pp.237-242
    • /
    • 1989
  • The physical properties and drug release behaviours of polyethylene glycol grafted poly ${\gamma}$- benzyl L-glutamate (PEG- g- PBLG), polyethylene glycol crosslinked poly ${\gamma}$-benzyl L- glutamate(PEG-c-PBLG), and PBLG homopolymer are compared. PBLG containing PEG segements showed higher wettability and larger enlongation than PBLG homoplymer, but lower elastic modulus. The release rate of rhodamine is strongly influenced by the wettability of the polymer. Rhodamine is more rapidly released from PEG-c-PBLG membrane having a larger water contact angle than from other polymer having a lower water contact angle. The surfaces of PBLG derivative membranes are modified by substitution reaction using hydroxyalkylamine. The resulting polymer membranes showed hider wettability and swelling ratio than virgin membranes.

  • PDF

초임계 반용매법을 이용한 폴리비닐피롤리돈 미세입자의 제조 (Preparation of Poly(N-vinyl-2-pyrrolidone) Microparticles Using Supercritical Anti-solvent)

  • 신문삼;김화용
    • 청정기술
    • /
    • 제14권4호
    • /
    • pp.242-247
    • /
    • 2008
  • 화장품, 의약품, 전자소재 분야에서 생체적합, 생분해성 고분자로 널리 사용되는 폴리비닐피롤리돈(PVP)을 에어로젤 용매추출 방법에 의해 미세입자를 제조하였다. 용매로는 이 염화메탄올, 반용매로는 초임계 이산화탄소가 사용되었다. 온도, 압력, 이산화탄소 유량, 용액유량의 작업조건에 따라 0.184 - $0.249\;{\mu}m$입자크기를 얻었고, 그 입자크기에 영향을 미치는 초기구형 입자크기와의 상관관계를 규명하였다.

  • PDF

Albumin-conjugated Cadmium Sulfide Nanoparticles and their Interaction with KB Cells

  • Selim, K.M. Kamruzzaman;Kang, Inn-Kyu;Guo, Haiqing
    • Macromolecular Research
    • /
    • 제17권6호
    • /
    • pp.403-410
    • /
    • 2009
  • Cytotoxicity is a severe problem of cadmium sulfide nanoparticles(CSNPs) for use in biological systems. In the present study, mercaptoacetic acid-coated CSNPs were conjugated with bovine serum albumin (BSA) to improve biocompatibility. The surface properties of the CSNPs and albumin-conjugated CSNPs (ACSNPs) were characterized by XRD, UV, FTIR, EA, TEM and DLS. Human breast cancer cells (KB cells) were then cultured in the presence of the nanoparticles to evaluate the cytotoxicity of CSNPs and ACSNPs. Finally, the fluorescence intensity of the nanoparticles' aqueous solution was examined using a fluorescence spectrometer. The results showed that the cell compatibility and fluorescence intensity of ACSNPs were higher than those of CSNPs. The strongly luminescent features of the biocompatible ACSNPs are promising for use in biological fields such as cellular labeling, intracellular tracking and molecular imaging.

Highly Homogeneous Carbon Nanotube-Polycaprolactone Composites with Various and Controllable Concentrations of Ionically-Modified-MWCNTs

  • Lee, Hae-Hyoung;Shin, Ueon-Sang;Jin, Guang-Zhen;Kim, Hae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.157-161
    • /
    • 2011
  • For the fabrication of multifunctional biopolymer nanocomposites in the combination of carbon nanotubes (CNTs), recently increasing attention has been paid to an effective homogenization of CNTs within polymer matrices and a fine tuning of the concentration. We developed an efficient method to produce homogeneous CNT-polycaprolactone nanocomposites with various and controllable CNT concentrations using an ionically-modified multi-walled CNT, MWCNT-Cl. The modified MWCNTs could be homogeneously dispersed in tetrahydrofuran (THF). Polycaprolactone (PCL) as a biodegradable and biocompatible polymer was smoothly dissolved in the homogeneous MWCNT-Cl/THF solution without agglomeration of MWCNT-Cl. The physicochemical and mechanical properties of the resultant nanocomposites were examined and the biological usefulness was briefly assessed.

Poly(vinyl pyrrolidone) Conjugated Lipid System for the Hydrophobic Drug Delivery

  • Lee, Hye-Yun;Yu, Seol-A;Jeong, Kwan-Ho;Kim, Young-Jin
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.547-552
    • /
    • 2007
  • Water soluble polymer, poly(vinyl pyrrolidone) was chosen to conjugate with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl) (N-succinyl DPPE) to make a new drug delivery system. PVP with an amine group (amino-PVP) was polymerized by free radical polymerization. The amine group of amino-PVP was conjugated with the carboxylic group of N-succinyl DPPE. The resultant conjugate could form nanoparticles in the aqueous solution; these nanoparticles were termed a lipid-polymer system. The critical aggregation concentration was measured with pyrene to give a value of $1{\times}10^{-3}g/L$. The particle size of the lipid-polymer system, as measured by DLS, AFM and TEM, was about 70 nm. Lipophilic component in the inner part of the lipid-polymer system could derive the physical interaction with hydrophobic drugs. Griseofulvin was used as a model drug in this study. The loading efficiency and release profile of the drug were measured by HPLC. The loading efficiency was about 54%. The release behavior was sustained for a prolonged time of 12 days. The proposed lipid-polymer system with biodegradable and biocompatible properties has promising potential as a passive-targeting drug delivery carrier because of its small particle size.

자극감응성 PHEMA 하이브리드 젤의 제조와 팽윤거동 (Preparation and Swelling Behavior of Stimuli-responsive PHEMA Hybrid Gels)

  • 안중현;전영실;정동준;김지흥
    • 폴리머
    • /
    • 제35권1호
    • /
    • pp.94-98
    • /
    • 2011
  • 생체 적합하고 온도 및 pH에 대한 민감성을 갖는 하이드로젤로서 Pluronic과 acrylic acid (AAc) 공단량체를 도입한 개질 PHEMA 가교젤을 광중합법을 사용하여 제조하고 그 팽윤거동을 조사하였다. 하이드로젤에 도입된 온도민감성 Pluronic의 영향 때문에 낮은 온도에서는 높은 팽윤거동을 보이다가 졸-젤 전이 이상의 온도에서 젤 수축이 일어나고 팽윤비의 감소가 나타났다. 한편 이온성의 AAc 공단량체의 도입과 함량 증가에 따라 하이브리드 젤의 팽윤비는 증가하였으며, 이들 구조가 갖는 일정 pH 영역에서 이온화 영향으로 pH에 민감한 팽윤거동을 나타내었다. 한편 SEM을 통해 하이드로젤의 다공성 모폴로지 변화를 관찰하였다.

Nanofabrication of Microbial Polyester by Electrospinning Promotes Cell Attachment

  • Lee, Ik-Sang;Kwon, Oh-Hyeong;Wan Meng;Kang, Inn-Kyu;Yoshihiro Ito
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.374-378
    • /
    • 2004
  • The biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as nanofibrous mats by electrospinning. Image analysis of the electrospun nanofibers fabricated from a 2 wt% 2,2,2-trifluoroethanol solution revealed a unimodal distribution pattern of fiber diameters with an observed average diameter of ca. 185 nm. The fiber diameter of electrospun fabrics could be controlled by adjusting the electro spinning parameters, including the solvent composition, concentration, applied voltage, and tip-to-collector distance. Chondrocytes derived from rabbit ear were cultured on a PHBV cast film and an electrospun PHBV nano-fibrous mat. After incubation for 2 h, the percentages of attached chondrocytes on the surfaces of the flat PHBV film and the PHBV nanofibrous mat were 19.0 and 30.1 %, respectively. On the surface of the electrospun PHBV fabric, more chondrocytes were attached and appeared to have a much greater spreaded morphology than did that of the flat PHBV cast film in the early culture stage. The electro spun PHBV nanofabric provides an attractive structure for the attachment and growth of chondrocytes as cell culture surfaces for tissue engineering.

Advances in Biodegradable Polymers for Drug Delivery Systems

  • Yong Kiel sung;Kim, Sung-Wan
    • Macromolecular Research
    • /
    • 제8권5호
    • /
    • pp.199-208
    • /
    • 2000
  • The recent development of biodegradable polymers for drug delivery system (DDS) has been investigated. The biodegradable polymers for DDS are mainly discussed in two categories: one category is natural biodegradable polymers such as polysaccharides, modified celluloses, poly(${\alpha}$-amino acid)s, modified proteins, and microbial biodegradable polymers; the other is synthetic biodegradable polymers such as poly(ester)s, poly(ortho ester)s, poly(phosphazene)s, poly(anhydride)s, poly(alkyl cyanoacrylate)s, and multiblock copolymers. The bioconjugate polymeric drug delivery systems have been also proposed for the design of biocompatible polymeric controlled drug delivery.

  • PDF

Synthesis and Characterization of Thermosensitive Nanoparticles Based on PNIPAAm Core and Chitosan Shell Structure

  • Jung, Hyun;Jang, Mi-Kyeong;Nah, Jae-Woon;Kim, Yang-Bae
    • Macromolecular Research
    • /
    • 제17권4호
    • /
    • pp.265-270
    • /
    • 2009
  • Noble thermosensitive nanoparticles, based on a PNIPAAm-co-AA core and a chitosan shell structure, were designed and synthesized for the controlled release of the loaded drug. PNIPAAm nanoparticles containing a carboxylic group on their surface were synthesized using emulsion polymerization. The carboxylic groups were conjugated with the amino group of a low molecular weight, water soluble chitosan. The particle size of the synthesized nanoparticles was decreased from 380 to 25 nm as the temperature of the dispersed medium was increased. Chitosan-conjugated nanoparticles with $2{\sim}5$ wt% MBA, a crosslinking monomer, induced a stable aqueous dispersion at a concentration of 1mg/1mL. The chitosan-conjugated nanoparticles showed thermo sensitive behaviors such as LCST and size shrinkage that were affected by the PNIPAAm core and induced some particle aggregation around LCST, which was not shown in the NIPAAm-co-AA nanoparticles. These chitosan-conjugated nanoparticles are also expected to be more biocompatible than the PNIPAAm core itself through the chitosan shell structures.