• Title/Summary/Keyword: Bio-sensor System

Search Result 293, Processing Time 0.029 seconds

Development of the Measuring System for Automation of Hydroponics (수경재배 자동화를 위한 계측시스템의 개발)

  • 김성은;김영식;김승우
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.210-214
    • /
    • 1996
  • The measuring system was developed for automation of hydroponic culture. It runs in Windows 3.1 and 95. Main window contains greenhouse screen and menu bars such as system setting, sensor calibration, greenhouse status, actuator control, file management, view, and help. Users can use pop-up menu, tool bar and status bat as well as menu bar for manipulation. Especially it was designed to retain flexibility for researchers, who changed detecting sensors frequently. Users can change storage intervals of files, of which 3 types were prepared to use in other software like as statistical programs, graphic programs and/or spread sheets. This system was adopted to deep flow culture system and evaluated to be appropriate for any kind of hydroponic systems.

  • PDF

Cucurbitacin B Activates Bitter-Sensing Gustatory Receptor Neurons via Gustatory Receptor 33a in Drosophila melanogaster

  • Rimal, Suman;Sang, Jiun;Dhakal, Subash;Lee, Youngseok
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.530-538
    • /
    • 2020
  • The Gustatory system enables animals to detect toxic bitter chemicals, which is critical for insects to survive food induced toxicity. Cucurbitacin is widely present in plants such as cucumber and gourds that acts as an anti-herbivore chemical and an insecticide. Cucurbitacin has a harmful effect on insect larvae as well. Although various beneficial effects of cucurbitacin such as alleviating hyperglycemia have also been documented, it is not clear what kinds of molecular sensors are required to detect cucurbitacin in nature. Cucurbitacin B, a major bitter component of bitter melon, was applied to induce action potentials from sensilla of a mouth part of the fly, labellum. Here we identify that only Gr33a is required for activating bitter-sensing gustatory receptor neurons by cucurbitacin B among available 26 Grs, 23 Irs, 11 Trp mutants, and 26 Gr-RNAi lines. We further investigated the difference between control and Gr33a mutant by analyzing binary food choice assay. We also measured toxic effect of Cucurbitacin B over 0.01 mM range. Our findings uncover the molecular sensor of cucurbitacin B in Drosophila melanogaster. We propose that the discarded shell of Cucurbitaceae can be developed to make a new insecticide.

Quantitative Label-free Biodetection of Acute Disease Related Proteins Based on Nanomechanical Dynamic Microcantilevers

  • Hwang, Kyo-Seon;Cha, Byung-Hak;Kim, Sang-Kyung;Park, Jung-Ho;Kim, Tae-Song
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.151-160
    • /
    • 2007
  • We report the label-free biomolecules detection based on nanomechanical micro cantilevers operated in dynamic mode for detection of two marker proteins (myoglobin and creatin kinase-MB (CK-MB)) of acute myocardical infarctions. When the specific binding between the antigen and its antibody occurred on the fuctionalized microcantilever surface, mechanical response (i.e. resonant frequency) of microcantilevers was changed in lower frequency range. We performed the label-free biomolecules detection of myoglobin and CK-MB antigen in the low concentration (clinical threshold concentration range) as much as 1 ng/ml from measuring the dynamic response change of micro cantilevers caused by the intermolecular force. Moreover, we estimate the surface stress on the dynamic microcantilevers generated by specific antibody-antigen binding. It is suggested that our dynamic microcantilevers may enable one to use the sensitive label-free biomolecules detection for application to the disease diagnosis system based on mechanical immuno-sensor.

A New Concept for Efficient Sensitivity Amplification of a QCM Based Immunosensor for TNF-α by Using Modified Magnetic Particles under Applied Magnetic Field

  • Bahk, Yeon-Kyoung;Kim, Hyung-Hoon;Park, Deog-Su;Chang, Seung-Cheol;Go, Jeung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4215-4220
    • /
    • 2011
  • This study introduces a new concept for a simple, efficient and cheap sensitivity amplification of a Quartz Crystal Microbalance (QCM) based immunosensor system for the detection of tumor necrosis factor-alpha (TNF-${\alpha}$, TNF) by using an in-built magnetic system. The frequency shift due to the applied magnetic field was successfully observed on magnetic particles labeled detection antibodies, anti-human TNF-${\alpha}$, which were bound to the immunologically captured TNF-${\alpha}$ on the gold coated quartz crystals. In the present system, the magnitude of frequency shift depends on both the strength of magnetic field and the amount of target antigen applied. Significant signal amplification was observed when the additional built-in residual stress generated by the modified magnetic particles under the magnetic field applied. Used in conjunction with a sandwich type non-competitive immunoassay format, the lower detection limit was calculated to be 25 $ngmL^{-1}$ and showed good linearity up to TNF-${\alpha}$ concentrations as high as 2.0 ${\mu}gmL^{-1}$. The sensitivity, most importantly, was improved up to 4.3 times compared with the same QCM system which was used only an antigen-antibody binding without additional magnetic amplification.

Repeatability Study of a Pneumatic Dispensing System for Bio-Applications (바이오 응용을 위한 공압 디스펜싱 시스템의 반복 정밀도 연구)

  • Lee, Sang-Min;Choi, In-Ho;Kim, Joon-Won
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • Biological and chemical assays(e.g., clinical tests for medical diagnosis) are needed to handle small liquid volume with high accuracy and high reliability. Many micro-dispensing systems using various actuation methods have been developed and applied. In this research, we confirm repeatability of the cartridge-type dispensing system with various measuring methods for guarantee of an acceptable reliability. We systematically examine the dispensed volume variation and dispense rate during 500,000 shots of sequential actuation. Using the same method, we confirm the repeatability of dispensed volume while varying operating conditions and design parameter(i.e., outlet size) of the dispensing system. Also, we examine the consistency of the dispensed volume of droplet while varying the operating pressures. Furthermore, we repeatedly measure differences between an actual dispensed volume and a target volume. According to our results, it is expected that the stable and reliable performance of our dispensing system can effectively be used in various applications containing bio-solutions.

The Mobile Health-Care Garment System for Measurement of Cardiorespiratory Signal (ECG와 호흡 측정이 가능한 모바일 헬스케어 의류 시스템)

  • Kim, Jeong-Do;Kim, Kap-Jin;Chung, Gi-Su;Lee, Jung-Hwan;Ahn, Jin-Ho;Lee, Sang-Goog
    • The KIPS Transactions:PartA
    • /
    • v.17A no.3
    • /
    • pp.145-152
    • /
    • 2010
  • Most wearable system for mobile healthcare applications consists of three parts. The first part is the sensing elements based on bio-signal, the second is the circuit module for control, data acquisition and wireless communication and control and the third is garment with a built-in electrodes and circuits. The existing healthcare garment systems have to find a solution to signal-wire and uncomfortable and inappropriate electrode to long-term attachment. Even if the wireless communication is used for healthcare garment system, the interface between sensors and circuits have to use wires. To solve these problems, this paper use electrode using PEDOT coated PVDF nanoweb for ECG signal and PVDF film sensor for respiratory signal. And, we constructed garment network using digital yarn of 10um, and transmitted ECG and respiratory signal to mobile phone through the integrated circuit with bluetooth called station To evaluate feasibility of the proposed mobile healthcare garment system, we experimented with transmission and measurement of ECG and respiratory signal using nanoweb electrode and digital yarn. We got a successful result without noise and attenuation.

Development of a Real-Time Measurement System for Horizontal Soil Strength

  • Cho, Yongjin;Lee, Dong Hoon;Park, Wonyeop;Lee, Kyou Seung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.165-177
    • /
    • 2015
  • Purpose: Accurate monitoring of soil strength is a key technology applicable to various precision agricultural practices. Soil strength has been traditionally measured using a cone penetrometer, which is time-consuming and expensive, making it difficult to obtain the spatial data required for precision agriculture. To improve the current, inefficient method of measuring soil strength, our objective was to develop and evaluate an in-situ system that could measure horizontal soil strength in real-time, while moving across a soil bin. Methods: Multiple cone-shape penetrometers were horizontally assembled at the front of a vertical plow blade at intervals of 5 cm. Each penetrometer was directly connected to a load cell, which measured loads of 0-2.54 kN. In order to process the digital signals from every individual transducer concurrently, a microcontroller was embedded into the measurement system. Wireless data communication was used between a data storage device and this real-time horizontal soil strength (RHSS) measurement system travelling at 0.5 m/s through an indoor experimental soil bin. The horizontal soil strength index (HSSI) measured by the developed system was compared with the cone index (CI) measured by a traditional cone penetrometer. Results: The coefficient of determination between the CI and the HSSI at depths of 5 cm and 10 cm ($r^2=0.67$ and 0.88, respectively) were relatively less than those measured below 20 cm ($r^2{\geq}0.93$). Additionally, the measured HSSIs were typically greater than the CIs for a given numbers of compactor operations. For an all-depth regression, the coefficient of determination was 0.94, with a RMSE of 0.23. Conclusions: A HSSI measurement system was evaluated in comparison with the conventional soil strength measurement system, CI. Further study is needed, in the form of field tests, on this real-time measurement and control system, which would be applied to precision agriculture.

Comparison of Nano-particle Emission Characteristics in CI Engine with Various Biodiesel Blending Rates by using PPS System (PPS시스템 이용 바이오디젤 혼합율에 따른 극미세입자 배출특성 비교)

  • Kwon, J.W.;Kim, M.S.;Chung, M.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.134-139
    • /
    • 2012
  • The main purpose of this study is to analyze and compare the nano-particle emission characteristics by 3-different biodiesel blending rates in a CI engine. Nano-particle number density emitted from various operating conditions of compression ignition engine can be investigated by using the PPS (Pegasor Particle Sensor) system. Namely, some particle charged through the corona discharge in real-time can be measured by PPS system. Under the steady state operation of the 2.0L CRDi diesel engine with different operating condition and biodiesel blending rates, the nano-particle number density was analyzed at the downstream position of DOC system. As this research result, more engine load speed and higher the concentration of biodiesel blending rate showed that the nano-particle number density decreases. Also we found that DOC system for clean diesel engine is effectively useful instrument to reduce diesel particulate matter as resource of nano-particle generation.

Development of Personalized Exercise Prescription System based on Kinect Sensor (Kinect Sensor 기반의 개인 맞춤형 운동 처방 시스템 개발)

  • Woo, Hyun-Ji;Yu, Mi;Hong, Chul-Un;Kwon, Tae-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.593-605
    • /
    • 2022
  • The purpose of this study is to investigate the personalized treacmill exercise analysis using a smart mirror based on Kinect sensor. To evaluate the performance of the development system, 10 health males were used to measure the range of the hip joint, knee joint, and ankle joint using a smart mirror when walking on a treadmill. For the validity and reliability of the development system, the validity and reliability were analyzed by comparing the human movement data measured by the Kinect sensor with the human movement data measured by the infrared motion capture device. As a result of validity verification, the correlation coefficient r=0.871~0.919 showed a high positive correlation, and through linear regression analysis, the validity of the smart mirror system was 88%. Reliability verification was conducted by ICC analysis. As a result of reliability verification, the correlation coefficient r=0.743~0.916 showed high correlation between subjects, and the consistency for repeated measurement was also very high at ICC=0.937. In conclusion, despite the disadvantage that Kinect sensor is less accurate than the motion capture system, Kinect is it has the advantage of low price and real-time information feedback. This means that the Kinect sensor is likely to be used as a tool for evaluating exercise prescription through human motion measurement and analysis.

A Study on How to Reduce the Amount of Groundwater Used in the Dry Season and Improve the Water Quality of the Base Runoff (갈수기 지하수 물 사용량 저감 및 기저유출 수질 개선 방안 연구)

  • Kang, Tae-Seong;Yang, Dong-Seok;Yu, Na-Yeong;Shin, Min-Hwan;Lim, Kyoung-Jae;Kim, Jong-Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.27-35
    • /
    • 2022
  • Based on the current status of groundwater usage in the dry season through field surveys, this study tried to suggest countermeasures to reduce groundwater usage and to improve the water quality of baseflow from agricultural fields. For this purposes, basins with water curtain cultivation preceded were targeted where decreases of groundwater due to continuous use of groundwater in spring and winter annually observed. From monitoring groudwater usage of the study watershed, 130,058, 130,105 m3/day of water was pumped in during the water curtain cultivation period (October-February) in the Shindun, Seokwon watershed respectively. And the pilot application of the smart automated sensor-based water curtain cultivation system (smart WC system) developed in this study to reduce groundwater consumption has been conducted. As a result, the efficiency of the smart WC system when threshold temperature is set as 6.3 ℃ was 21.1% compared to conventional cultivation and efficiency increased as threshold temperature gets lower. Lastly, in this study, culvert drainage and Bio-filters were installed and rainfall monitoring was performed 15 times in order to analyze the baseflow securement and pollutant loads behavior. As a result, the test-bed with culvert drainage and Bio-filter installed together generated 61.4% more baseflow (4.974 m3) than the test-bed with only culvert drainage was installed (3.056 m3). However, the total pollutant load of all water quality contents (BOD, COD, T-N, TOC) except for the SS and T-P was found to be greater in the culvert drain and Bio-filter installed than in the culvert drain test-bed.