Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0019

Cucurbitacin B Activates Bitter-Sensing Gustatory Receptor Neurons via Gustatory Receptor 33a in Drosophila melanogaster  

Rimal, Suman (Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University)
Sang, Jiun (Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University)
Dhakal, Subash (Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University)
Lee, Youngseok (Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University)
Abstract
The Gustatory system enables animals to detect toxic bitter chemicals, which is critical for insects to survive food induced toxicity. Cucurbitacin is widely present in plants such as cucumber and gourds that acts as an anti-herbivore chemical and an insecticide. Cucurbitacin has a harmful effect on insect larvae as well. Although various beneficial effects of cucurbitacin such as alleviating hyperglycemia have also been documented, it is not clear what kinds of molecular sensors are required to detect cucurbitacin in nature. Cucurbitacin B, a major bitter component of bitter melon, was applied to induce action potentials from sensilla of a mouth part of the fly, labellum. Here we identify that only Gr33a is required for activating bitter-sensing gustatory receptor neurons by cucurbitacin B among available 26 Grs, 23 Irs, 11 Trp mutants, and 26 Gr-RNAi lines. We further investigated the difference between control and Gr33a mutant by analyzing binary food choice assay. We also measured toxic effect of Cucurbitacin B over 0.01 mM range. Our findings uncover the molecular sensor of cucurbitacin B in Drosophila melanogaster. We propose that the discarded shell of Cucurbitaceae can be developed to make a new insecticide.
Keywords
bitterness; Cucurbitaceae; cucurbitacin B; Drosophila melanogaster; toxicity;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Poudel, S. and Lee, Y. (2016). Gustatory receptors required for avoiding the toxic compound coumarin in Drosophila melanogaster. Mol. Cells 39, 310.   DOI
2 Poudel, S. and Lee, Y. (2018). Impaired taste associative memory and memory enhancement by feeding omija in Parkinson's disease fly model. Mol. Cells 41, 646.   DOI
3 Rimal, S. and Lee, Y. (2018). The multidimensional ionotropic receptors of Drosophila melanogaster. Insect Mol. Biol. 27, 1-7.   DOI
4 Rimal, S. and Lee, Y. (2019). Molecular sensor of nicotine in taste of Drosophila melanogaster. Insect Biochem. Mol. Biol. 111, 103178.   DOI
5 Rimal, S., Sang, J., Poudel, S., Thakur, D., Montell, C., and Lee, Y. (2019). Mechanism of acetic acid gustatory repulsion in Drosophila. Cell Rep. 26, 1432-1442.e4.   DOI
6 Robertson, H.M., Warr, C.G., and Carlson, J.R. (2003). Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 100, 14537-14542.   DOI
7 Shanbhag, S., Park, S.K., Pikielny, C., and Steinbrecht, R. (2001). Gustatory organs of Drosophila melanogaster: fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res. 304, 423-437.   DOI
8 Shim, J., Lee, Y., Jeong, Y.T., Kim, Y., Lee, M.G., Montell, C., and Moon, S.J. (2015). The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nat. Commun. 6, 8867.   DOI
9 Stocker, R.F. (1994). The organization of the chemosensory system in Drosophila melanogaster: a rewiew. Cell Tissue Res. 275, 3-26.   DOI
10 Sung, H.Y., Jeong, Y.T., Lim, J.Y., Kim, H., Oh, S.M., Hwang, S.W., Kwon, J.Y., and Moon, S.J. (2017). Heterogeneity in the Drosophila gustatory receptor complexes that detect aversive compounds. Nat. Commun. 8, 1484.   DOI
11 Watnick, T.J., Jin, Y., Matunis, E., Kernan, M.J., and Montell, C. (2003). A flagellar polycystin-2 homolog required for male fertility in Drosophila. Curr. Biol. 13, 2179-2184.   DOI
12 Adeyemi, M.H. (2010). The potential of secondary metabolites in plant material as deterents against insect pests: a review. Afr. J. Pure Appl. Chem. 4, 243-246.
13 Tallamy, D.W., Stull, J., Ehresman, N.P., Gorski, P.M., and Mason, C.E. (1997). Cucurbitacins as feeding and oviposition deterrents to insects. Environ. Entomol. 26, 678-683.   DOI
14 Thorne, N., Chromey, C., Bray, S., and Amrein, H. (2004). Taste perception and coding in Drosophila. Curr. Biol. 14, 1065-1079.   DOI
15 Venkatachalam, K., Long, A.A., Elsaesser, R., Nikolaeva, D., Broadie, K., and Montell, C. (2008). Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135, 838-851.   DOI
16 Wang, T., Jiao, Y., and Montell, C. (2005). Dissecting independent channel and scaffolding roles of the Drosophila transient receptor potential channel. J. Cell Biol. 171, 685-694.   DOI
17 Weiss, L.A., Dahanukar, A., Kwon, J.Y., Banerjee, D., and Carlson, J.R. (2011). The molecular and cellular basis of bitter taste in Drosophila. Neuron 69, 258-272.   DOI
18 Yousaf, H.K., Shan, T., Chen, X., Ma, K., Shi, X., Desneux, N., Biondi, A., and Gao, X. (2018). Impact of the secondary plant metabolite Cucurbitacin B on the demographical traits of the melon aphid, Aphis gossypii. Sci Rep. 8, 16473.   DOI
19 Zou, C., Liu, G., Liu, S., Liu, S., Song, Q., Wang, J., Feng, Q., Su, Y., and Li, S. (2018). Cucurbitacin B acts a potential insect growth regulator by antagonizing 20‐hydroxyecdysone activity. Pest Manag. Sci. 74, 1394-1403.   DOI
20 Zhang, Y.V., Ni, J., and Montell, C. (2013). The molecular basis for attractive salt-taste coding in Drosophila. Science 340, 1334-1338.   DOI
21 Clyne, P.J., Warr, C.G., and Carlson, J.R. (2000). Candidate taste receptors in Drosophila. Science 287, 1830-1834.   DOI
22 Akitake, B., Ren, Q., Boiko, N., Ni, J., Sokabe, T., Stockand, J.D., Eaton, B.A., and Montell, C. (2015). Coordination and fine motor control depend on Drosophila $TRP_{\gamma}$. Nat Commun. 6, 7288.   DOI
23 Chen, J.C., Chiu, M.H., Nie, R.L., Cordell, G.A., and Qiu, S.X. (2005). Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat. Prod. Rep. 22, 386-399.   DOI
24 Chyb, S., Dahanukar, A., Wickens, A., and Carlson, J.R. (2003). Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc. Natl. Acad. Sci. U. S. A. 100, 14526-14530.   DOI
25 Dahanukar, A., Lei, Y.T., Kwon, J.Y., and Carlson, J.R. (2007). Two Gr genes underlie sugar reception in Drosophila. Neuron 56, 503-516.   DOI
26 Dhakal, S. and Lee, Y. (2019). Transient receptor potential channels and metabolism. Mol. Cells 42, 569.   DOI
27 Fowler, M.A. and Montell, C. (2013). Drosophila TRP channels and animal behavior. Life Sci. 92, 394-403.   DOI
28 Hiroi, M., Marion-Poll, F., and Tanimura, T. (2002). Differentiated response to sugars among labellar chemosensilla in Drosophila. Zoolog. Sci. 19, 1009-1019.   DOI
29 Garg, S., Kaul, S.C., and Wadhwa, R. (2018). Cucurbitacin B and cancer intervention: chemistry, biology and mechanisms. Int. J. Oncol. 52, 19-37.
30 Gong, Z., Son, W., Chung, Y.D., Kim, J., Shin, D.W., McClung, C.A., Lee, Y., Lee, H.W., Chang, D.J., Kaang, B.K., et al. (2004). Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J. Neurosci. 24, 9059-9066.   DOI
31 Ibanez, S., Gallet, C., and Despres, L. (2012). Plant insecticidal toxins in ecological networks. Toxins 4, 228-243.   DOI
32 Kim, S.H., Lee, Y., Akitake, B., Woodward, O.M., Guggino, W.B., and Montell, C. (2010). Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc. Natl. Acad. Sci. U. S. A. 107, 8440-8445.   DOI
33 Jaeger, A.H., Stanley, M., Weiss, Z.F., Musso, P.Y., Chan, R.C., Zhang, H., Feldman-Kiss, D., and Gordon, M.D. (2018). A complex peripheral code for salt taste in Drosophila. Elife 7, e37167.   DOI
34 Joseph, R.M. and Carlson, J.R. (2015). Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet. 31, 683-695.   DOI
35 Kaushik, U., Aeri, V., and Mir, S.R. (2015). Cucurbitacins-an insight into medicinal leads from nature. Pharmacogn. Rev. 9, 12.   DOI
36 Kim, J., Chung, Y.D., Park, D.Y., Choi, S., Shin, D.W., Soh, H., Lee, H.W., Son, W., Yim, J., Park, C.S., et al. (2003). A TRPV family ion channel required for hearing in Drosophila. Nature 424, 81.   DOI
37 Kim, K.H., Lee, I.S., Park, J.Y., Kim, Y., and Jang, H.J. (2018). Cucurbitacin B induces hypoglycemic effect in diabetic mice by regulation of AMPactivated protein kinase alpha and glucagon-like peptide-1 via bitter taste receptor signaling. Front. Pharmacol. 9, 1071.   DOI
38 Kwon, Y., Shim, H.S., Wang, X., and Montell, C. (2008). Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat. Neurosci. 11, 871.   DOI
39 Lee, Y., Kang, M.J., Shim, J., Cheong, C.U., Moon, S.J., and Montell, C. (2012). Gustatory receptors required for avoiding the insecticide L-canavanine. J. Neurosci. 32, 1429-1435.   DOI
40 Lee, Y., Lee, Y., Lee, J., Bang, S., Hyun, S., Kang, J., Hong, S.T., Bae, E., Kaang, B.K., and Kim, J. (2005). Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat. Genet. 37, 305.   DOI
41 Miyamoto, T., Slone, J., Song, X., and Amrein, H. (2012). A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151, 1113-1125.   DOI
42 Lee, Y., Moon, S.J., and Montell, C. (2009). Multiple gustatory receptors required for the caffeine response in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 106, 4495-4500.   DOI
43 Lee, Y., Moon, S.J., Wang, Y., and Montell, C. (2015). A Drosophila gustatory receptor required for strychnine sensation. Chem. Senses 40, 525-533.   DOI
44 Lee, Y. and Poudel, S. (2014). Taste sensation in Drosophila melanoganster. Hanyang Med. Rev. 34, 130-136.   DOI
45 Lee, Y., Poudel, S., Kim, Y., Thakur, D., and Montell, C. (2018). Calcium taste avoidance in Drosophila. Neuron 97, 67-74.e4.   DOI
46 Li, H., Chaney, S., Forte, M., and Hirsh, J. (2000). Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr. Biol. 10, 211-214.   DOI
47 Moon, S.J., Kottgen, M., Jiao, Y., Xu, H., and Montell, C. (2006). A taste receptor required for the caffeine response in vivo. Curr. Biol. 16, 1812-1817.   DOI
48 Moon, S.J., Lee, Y., Jiao, Y., and Montell, C. (2009). A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr. Biol. 19, 1623-1627.   DOI
49 Niemeyer, B.A., Suzuki, E., Scott, K., Jalink, K., and Zuker, C.S. (1996). The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 85, 651-659.   DOI
50 Poudel, S., Kim, Y., Kim, Y.T., and Lee, Y. (2015). Gustatory receptors required for sensing umbelliferone in Drosophila melanogaster. Insect Biochem. Mol. Biol. 66, 110-118.   DOI