References
- Adeyemi, M.H. (2010). The potential of secondary metabolites in plant material as deterents against insect pests: a review. Afr. J. Pure Appl. Chem. 4, 243-246.
-
Akitake, B., Ren, Q., Boiko, N., Ni, J., Sokabe, T., Stockand, J.D., Eaton, B.A., and Montell, C. (2015). Coordination and fine motor control depend on Drosophila
$TRP_{\gamma}$ . Nat Commun. 6, 7288. https://doi.org/10.1038/ncomms8288 - Chen, J.C., Chiu, M.H., Nie, R.L., Cordell, G.A., and Qiu, S.X. (2005). Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat. Prod. Rep. 22, 386-399. https://doi.org/10.1039/b418841c
- Chyb, S., Dahanukar, A., Wickens, A., and Carlson, J.R. (2003). Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc. Natl. Acad. Sci. U. S. A. 100, 14526-14530. https://doi.org/10.1073/pnas.2135339100
- Clyne, P.J., Warr, C.G., and Carlson, J.R. (2000). Candidate taste receptors in Drosophila. Science 287, 1830-1834. https://doi.org/10.1126/science.287.5459.1830
- Dahanukar, A., Lei, Y.T., Kwon, J.Y., and Carlson, J.R. (2007). Two Gr genes underlie sugar reception in Drosophila. Neuron 56, 503-516. https://doi.org/10.1016/j.neuron.2007.10.024
- Dhakal, S. and Lee, Y. (2019). Transient receptor potential channels and metabolism. Mol. Cells 42, 569. https://doi.org/10.14348/MOLCELLS.2019.0007
- Fowler, M.A. and Montell, C. (2013). Drosophila TRP channels and animal behavior. Life Sci. 92, 394-403. https://doi.org/10.1016/j.lfs.2012.07.029
- Garg, S., Kaul, S.C., and Wadhwa, R. (2018). Cucurbitacin B and cancer intervention: chemistry, biology and mechanisms. Int. J. Oncol. 52, 19-37.
- Gong, Z., Son, W., Chung, Y.D., Kim, J., Shin, D.W., McClung, C.A., Lee, Y., Lee, H.W., Chang, D.J., Kaang, B.K., et al. (2004). Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J. Neurosci. 24, 9059-9066. https://doi.org/10.1523/JNEUROSCI.1645-04.2004
- Hiroi, M., Marion-Poll, F., and Tanimura, T. (2002). Differentiated response to sugars among labellar chemosensilla in Drosophila. Zoolog. Sci. 19, 1009-1019. https://doi.org/10.2108/zsj.19.1009
- Ibanez, S., Gallet, C., and Despres, L. (2012). Plant insecticidal toxins in ecological networks. Toxins 4, 228-243. https://doi.org/10.3390/toxins4040228
- Jaeger, A.H., Stanley, M., Weiss, Z.F., Musso, P.Y., Chan, R.C., Zhang, H., Feldman-Kiss, D., and Gordon, M.D. (2018). A complex peripheral code for salt taste in Drosophila. Elife 7, e37167. https://doi.org/10.7554/eLife.37167
- Joseph, R.M. and Carlson, J.R. (2015). Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet. 31, 683-695. https://doi.org/10.1016/j.tig.2015.09.005
- Kaushik, U., Aeri, V., and Mir, S.R. (2015). Cucurbitacins-an insight into medicinal leads from nature. Pharmacogn. Rev. 9, 12. https://doi.org/10.4103/0973-7847.156314
- Kim, J., Chung, Y.D., Park, D.Y., Choi, S., Shin, D.W., Soh, H., Lee, H.W., Son, W., Yim, J., Park, C.S., et al. (2003). A TRPV family ion channel required for hearing in Drosophila. Nature 424, 81. https://doi.org/10.1038/nature01733
- Kim, K.H., Lee, I.S., Park, J.Y., Kim, Y., and Jang, H.J. (2018). Cucurbitacin B induces hypoglycemic effect in diabetic mice by regulation of AMPactivated protein kinase alpha and glucagon-like peptide-1 via bitter taste receptor signaling. Front. Pharmacol. 9, 1071. https://doi.org/10.3389/fphar.2018.01071
- Kim, S.H., Lee, Y., Akitake, B., Woodward, O.M., Guggino, W.B., and Montell, C. (2010). Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc. Natl. Acad. Sci. U. S. A. 107, 8440-8445. https://doi.org/10.1073/pnas.1001425107
- Kwon, Y., Shim, H.S., Wang, X., and Montell, C. (2008). Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat. Neurosci. 11, 871. https://doi.org/10.1038/nn.2170
- Lee, Y., Kang, M.J., Shim, J., Cheong, C.U., Moon, S.J., and Montell, C. (2012). Gustatory receptors required for avoiding the insecticide L-canavanine. J. Neurosci. 32, 1429-1435. https://doi.org/10.1523/JNEUROSCI.4630-11.2012
- Lee, Y., Lee, Y., Lee, J., Bang, S., Hyun, S., Kang, J., Hong, S.T., Bae, E., Kaang, B.K., and Kim, J. (2005). Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat. Genet. 37, 305. https://doi.org/10.1038/ng1513
- Lee, Y., Moon, S.J., and Montell, C. (2009). Multiple gustatory receptors required for the caffeine response in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 106, 4495-4500. https://doi.org/10.1073/pnas.0811744106
- Lee, Y., Moon, S.J., Wang, Y., and Montell, C. (2015). A Drosophila gustatory receptor required for strychnine sensation. Chem. Senses 40, 525-533. https://doi.org/10.1093/chemse/bjv038
- Lee, Y. and Poudel, S. (2014). Taste sensation in Drosophila melanoganster. Hanyang Med. Rev. 34, 130-136. https://doi.org/10.7599/hmr.2014.34.3.130
- Lee, Y., Poudel, S., Kim, Y., Thakur, D., and Montell, C. (2018). Calcium taste avoidance in Drosophila. Neuron 97, 67-74.e4. https://doi.org/10.1016/j.neuron.2017.11.038
- Li, H., Chaney, S., Forte, M., and Hirsh, J. (2000). Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr. Biol. 10, 211-214. https://doi.org/10.1016/S0960-9822(00)00340-7
- Miyamoto, T., Slone, J., Song, X., and Amrein, H. (2012). A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151, 1113-1125. https://doi.org/10.1016/j.cell.2012.10.024
- Moon, S.J., Kottgen, M., Jiao, Y., Xu, H., and Montell, C. (2006). A taste receptor required for the caffeine response in vivo. Curr. Biol. 16, 1812-1817. https://doi.org/10.1016/j.cub.2006.07.024
- Moon, S.J., Lee, Y., Jiao, Y., and Montell, C. (2009). A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr. Biol. 19, 1623-1627. https://doi.org/10.1016/j.cub.2009.07.061
- Niemeyer, B.A., Suzuki, E., Scott, K., Jalink, K., and Zuker, C.S. (1996). The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 85, 651-659. https://doi.org/10.1016/S0092-8674(00)81232-5
- Poudel, S., Kim, Y., Kim, Y.T., and Lee, Y. (2015). Gustatory receptors required for sensing umbelliferone in Drosophila melanogaster. Insect Biochem. Mol. Biol. 66, 110-118. https://doi.org/10.1016/j.ibmb.2015.10.010
- Poudel, S. and Lee, Y. (2016). Gustatory receptors required for avoiding the toxic compound coumarin in Drosophila melanogaster. Mol. Cells 39, 310. https://doi.org/10.14348/molcells.2016.2250
- Poudel, S. and Lee, Y. (2018). Impaired taste associative memory and memory enhancement by feeding omija in Parkinson's disease fly model. Mol. Cells 41, 646. https://doi.org/10.14348/molcells.2018.0014
- Rimal, S. and Lee, Y. (2018). The multidimensional ionotropic receptors of Drosophila melanogaster. Insect Mol. Biol. 27, 1-7. https://doi.org/10.1111/imb.12347
- Rimal, S. and Lee, Y. (2019). Molecular sensor of nicotine in taste of Drosophila melanogaster. Insect Biochem. Mol. Biol. 111, 103178. https://doi.org/10.1016/j.ibmb.2019.103178
- Rimal, S., Sang, J., Poudel, S., Thakur, D., Montell, C., and Lee, Y. (2019). Mechanism of acetic acid gustatory repulsion in Drosophila. Cell Rep. 26, 1432-1442.e4. https://doi.org/10.1016/j.celrep.2019.01.042
- Robertson, H.M., Warr, C.G., and Carlson, J.R. (2003). Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 100, 14537-14542. https://doi.org/10.1073/pnas.2335847100
- Shanbhag, S., Park, S.K., Pikielny, C., and Steinbrecht, R. (2001). Gustatory organs of Drosophila melanogaster: fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res. 304, 423-437. https://doi.org/10.1007/s004410100388
- Shim, J., Lee, Y., Jeong, Y.T., Kim, Y., Lee, M.G., Montell, C., and Moon, S.J. (2015). The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nat. Commun. 6, 8867. https://doi.org/10.1038/ncomms9867
- Stocker, R.F. (1994). The organization of the chemosensory system in Drosophila melanogaster: a rewiew. Cell Tissue Res. 275, 3-26. https://doi.org/10.1007/BF00305372
- Sung, H.Y., Jeong, Y.T., Lim, J.Y., Kim, H., Oh, S.M., Hwang, S.W., Kwon, J.Y., and Moon, S.J. (2017). Heterogeneity in the Drosophila gustatory receptor complexes that detect aversive compounds. Nat. Commun. 8, 1484. https://doi.org/10.1038/s41467-017-01639-5
- Tallamy, D.W., Stull, J., Ehresman, N.P., Gorski, P.M., and Mason, C.E. (1997). Cucurbitacins as feeding and oviposition deterrents to insects. Environ. Entomol. 26, 678-683. https://doi.org/10.1093/ee/26.3.678
- Thorne, N., Chromey, C., Bray, S., and Amrein, H. (2004). Taste perception and coding in Drosophila. Curr. Biol. 14, 1065-1079. https://doi.org/10.1016/j.cub.2004.05.019
- Venkatachalam, K., Long, A.A., Elsaesser, R., Nikolaeva, D., Broadie, K., and Montell, C. (2008). Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135, 838-851. https://doi.org/10.1016/j.cell.2008.09.041
- Wang, T., Jiao, Y., and Montell, C. (2005). Dissecting independent channel and scaffolding roles of the Drosophila transient receptor potential channel. J. Cell Biol. 171, 685-694. https://doi.org/10.1083/jcb.200508030
- Watnick, T.J., Jin, Y., Matunis, E., Kernan, M.J., and Montell, C. (2003). A flagellar polycystin-2 homolog required for male fertility in Drosophila. Curr. Biol. 13, 2179-2184. https://doi.org/10.1016/j.cub.2003.12.002
- Weiss, L.A., Dahanukar, A., Kwon, J.Y., Banerjee, D., and Carlson, J.R. (2011). The molecular and cellular basis of bitter taste in Drosophila. Neuron 69, 258-272. https://doi.org/10.1016/j.neuron.2011.01.001
- Yousaf, H.K., Shan, T., Chen, X., Ma, K., Shi, X., Desneux, N., Biondi, A., and Gao, X. (2018). Impact of the secondary plant metabolite Cucurbitacin B on the demographical traits of the melon aphid, Aphis gossypii. Sci Rep. 8, 16473. https://doi.org/10.1038/s41598-018-34821-w
- Zhang, Y.V., Ni, J., and Montell, C. (2013). The molecular basis for attractive salt-taste coding in Drosophila. Science 340, 1334-1338. https://doi.org/10.1126/science.1234133
- Zou, C., Liu, G., Liu, S., Liu, S., Song, Q., Wang, J., Feng, Q., Su, Y., and Li, S. (2018). Cucurbitacin B acts a potential insect growth regulator by antagonizing 20‐hydroxyecdysone activity. Pest Manag. Sci. 74, 1394-1403. https://doi.org/10.1002/ps.4817
Cited by
- Evolutionary shifts in taste coding in the fruit pest Drosophila suzukii vol.10, 2020, https://doi.org/10.7554/elife.64317
- Cucurbitacin B Suppresses Hyperglycemia Associated with a High Sugar Diet and Promotes Sleep in Drosophila melanogaster vol.44, pp.2, 2020, https://doi.org/10.14348/molcells.2021.2245
- Ionotropic receptors mediate nitrogenous waste avoidance in Drosophila melanogaster vol.4, pp.1, 2021, https://doi.org/10.1038/s42003-021-02799-3