• Title/Summary/Keyword: Bio-analysis

Search Result 3,847, Processing Time 0.041 seconds

Structural Bioinformatics Analysis of Disease-related Mutations

  • Park, Seong-Jin;Oh, Sang-Ho;Park, Dae-Ui;Bhak, Jong
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.142-146
    • /
    • 2008
  • In order to understand the protein functions that are related to disease, it is important to detect the correlation between amino acid mutations and disease. Many mutation studies about disease-related proteins have been carried out through molecular biology techniques, such as vector design, protein engineering, and protein crystallization. However, experimental protein mutation studies are time-consuming, be it in vivo or in vitro. We therefore performed a bioinformatic analysis of known disease-related mutations and their protein structure changes in order to analyze the correlation between mutation and disease. For this study, we selected 111 diseases that were related to 175 proteins from the PDB database and 710 mutations that were found in the protein structures. The mutations were acquired from the Human Gene Mutation Database (HGMD). We selected point mutations, excluding only insertions or deletions, for detecting structural changes. To detect a structural change by mutation, we analyzed not only the structural properties (distance of pocket and mutation, pocket size, surface size, and stability), but also the physico-chemical properties (weight, instability, isoelectric point (IEP), and GRAVY score) for the 710 mutations. We detected that the distance between the pocket and disease-related mutation lay within $20\;{\AA}$ (98.5%, 700 proteins). We found that there was no significant correlation between structural stability and disease-causing mutations or between hydrophobicity changes and critical mutations. For large-scale mutational analysis of disease-causing mutations, our bioinformatics approach, using 710 structural mutations, called "Structural Mutatomics," can help researchers to detect disease-specific mutations and to understand the biological functions of disease-related proteins.

Image Discriminal Analysis for Detecting a Esophagitis (식도염 진단을 위한 영상 판별분석)

  • Seo K. W.;Lee C. W.;Kim W.;Lee S. Y.;Lee D. W.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.545-550
    • /
    • 2004
  • An Image processing algorithm was developed and tested to detect abnormal parts, such as esophagitis, with the information on the color and the texture in a digital clinic endoscopic image by using discriminal analysis. In order to develope the algorithm, the critical parameters from many parameters were found to distinguish between normal and abnormal part in the various images. The Inflammation and ulceration which are very important diagnostic indexes were detected by the algorithm. The algorithm proved to a reliable program for detecting abnormal parts with 20 images. A success rate was 92.8% and 92.4% in the calibration stage and the validation stage by using the algorithm with discriminal analysis.

A Comparison of the Effects of Worker-Related Variables on Process Efficiency in a Manufacturing System Simulation

  • Lee, Dongjune;Park, Hyunjoon;Choi, Ahnryul;Mun, Joung H.
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • Purpose: The goal of this study was to build an accurate digital factory that evaluates the performance of a factory using computer simulation. To achieve this goal, we evaluated the effect of worker-related variables on production in a simulation model using comparative analysis of two cases. Methods: The overall work process and worker-related variables were determined and used to build a simulation model. Siemens PLM Software's Plant Simulation was used to build a simulation model. Also, two simulation models were built, where the only difference was the use of the worker-related variable, and the total daily production analyzed and compared in terms of the individual process. Additionally, worker efficiency was evaluated based on worker analysis. Results: When the daily production of the two models were compared, a 0.16% error rate was observed for the model where the worker-related variables were applied and error rate was approximately 5.35% for the model where the worker-related variables were not applied. In addition, the production in the individual processes showed lower error rate in the model that included the worker-related variables than the model where the worker-related variables were not used. Also, among the total of 22 workers, only three workers satisfied the IFRS (International Financial Reporting Standards) suggested worker capacity rate (90%). Conclusions: In the daily total production and individual process production, the model that included the worker-related variables produced results that were closer to the real production values. This result indicates the importance of worker elements as input variables, in regards to building accurate simulation models. Also, as suggested in this study, the model that included the worker-related variables can be utilized to analyze in more detail actual production. The results from this study are expected to be utilized to improve the work process and worker efficiency.

Molecular Characterization of Dissolved Organic Matter Unveils their Complexity, Origin, and Fate in Glacier and Glacial-Fed Streams and Lakes on the Tibetan Plateau

  • Kim, Min Sung;Zhou, Lei;Choi, Mira;Zhang, Yunlin;Zhou, Yongqiang;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.192-199
    • /
    • 2021
  • Alpine glaciers harbor a large quantity of bio-labile dissolved organic matter (DOM), which plays a pivotal role in global carbon cycling as glacial-fed streams are headwaters of numerous large rivers. To understand the complexity, origin, and fate of DOM in glaciers and downstream-linked streams and lakes, we elucidated the molecular composition of DOM in two different Tibetan Plateau glaciers, eight glacial-fed streams and five lakes, using an ultrahigh-resolution 15 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The compositional changes of the DOM samples revealed that glacier DOM mostly exhibited sulfur-containing organic compounds (CHOS species). We also found that aliphatic formulae contributed more than 50% of the total abundance of assigned molecules in glacier samples, and those compounds were significantly related to CHOS species. The CHO proportions of glacial-fed streams and lakes samples increased with increasing distance from glacial terminals. The relative contribution of terrestrial-derived organics (i.e., lignins and tannins) declined while microbial-originated organics (aliphatics) increased with increasing elevation. This suggested the gradual input of allochthonous materials from non-glacial environment and the degradation of microbe-derived compounds along lower elevations. Alpine glaciers are retreating as a result of climate change and they nourished numerous streams, rivers, and downstream-linked lakes. Therefore, the interpretations of the detailed molecular changes in glacier ice, glacial-fed streams, and alpine lakes on the Tibetan Plateau could provide broad insights for understanding the biogeochemical cycling of glacial DOM and assessing how the nature of DOM impacts fluvial ecosystems.

Morphological Variations Between Cultivated Types of Perilla Crop and Their Weedy Types in Korea and Japan

  • Jung, Ji Na;Heo, Kweon;Kim, Myong Jo;Lee, Ju Kyong
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.361-370
    • /
    • 2008
  • In order to better understand the morphological differentiation of the two cultivated types of Perilla crop and their weedy types in Korea and Japan, we studied the variation of 62 accessions by examining 15 morphological characteristics. By using ANOVA (one-way analysis of variance), we determined that var. frutescens and var. crispa showed significant morphological differences in terms of plant height and seed weight. Furthermore, cultivated var. frutescens and var. crispa could also be clearly discriminated from one another using PCA (principal component analysis). Specifically, quantitative and qualitative characteristics such as plant height, seed weight, degree of pubescence, shape of leaf, color of leaf, fragrance of plant, color of flower, color of stem and seed size greatly contributed to differences seen in the positive and negative direction on the first axis. In our study, most accessions of cultivated var. frutescens and those of its weedy type could be clearly discriminated from one another, however, most accessions of cultivated and weedy types of var. crispa were not clearly discriminated by the ANOVA and PCA analyses. These results indicated that cultivated var. frutescens can be considered to be a domesticated form, while the cultivated var. crispa can not be considered to be a domesticated form in Korea and Japan. It is our belief that our results concerning the morphological variations among cultivated types of Perilla crop and their weedy types in Korea and Japan will help ensure the long-term success of breeding programs and maximize the use of the germplasm resources in Korea.

Effects of Bio-Ion Water on Growth Performance, Blood Characteristics and Meat Quality in Growing and Finishing Pigs (Bio 이온수 급여가 비육돈의 성장, 혈액성상 및 육질 특성에 미치는 영향)

  • Jung, Eun-Young;Kim, Gap-Don;Seo, Hyun-Woo;Yang, Han-Sul;Kim, Sam-Churl
    • Journal of agriculture & life science
    • /
    • v.45 no.1
    • /
    • pp.67-77
    • /
    • 2011
  • This study was conducted to investigate the effects of bio-ion water on growth performance, blood characteristics and meat quality in pigs. Ninety nine crossbreed pigs $(Landrace{\times}Yorkshire{\times}Duroc)$ were randomly allotted to three treatments; CON (basal diet), T1 (basal diet with bio ion water from growing period), T2 (basal diet with bio ion water from finishing period). There were no significant differences in growth performance and carcass characteristics of pigs among treatments. The red blood cell and white blood cell were significantly higher (P<0.05) in diet added with bio ion water than the control. Proximate analysis (%), meat color, pH, drip loss (%), cooking loss (%) and shear force $(kg/cm^{2})$ were not significantly different (P>0.05) among treatments. The treatment 1 had lower saturated fatty acid (SFA) to unsaturated fatty acid ratio, but higher UFA concentration than those of control. The aroma of cooked meat in T1 was higher than other treatments. Thereby, overall acceptability sensory score of cooked meat in T1 tended to be higher than other treatments.

Analysis of Expressed Sequence Tags from the Red Alga Griffithsia okiensis

  • Lee, Hyoung-Seok;Lee, Hong-Kum;An, Gyn-Heung;Lee, Yoo-Kyung
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.541-546
    • /
    • 2007
  • Red algae are distributed globally, and the group contains several commercially important species. Griffithsia okiensis is one of the most extensively studied red algal species. In this study, we conducted expressed sequence tag (ESTs) analysis and synonymous codon usage analysis using cultured G. okiensis samples. A total of 1,104 cDNA clones were sequenced using a cDNA library made from samples collected from Dolsan Island, on the southern coast of Korea. The clustering analysis of these sequences allowed for the identification of 1,048 unigene clusters consisting of 36 consensus and 1,012 singleton sequences. BLASTX searches generated 532 significant hits (E-value <$10^{-4}$) and via further Gene Ontology analysis, we constructed a functional classification of 434 unigenes. Our codon usage analysis showed that unigene clusters with more than three ESTs had higher GC contents (76.5%) at the third position of the codons than the singletons. Also, the majority of the optimal codons of G. okiensis and Chondrus crispus belonging to Bangiophycidae were G-ending, whereas those of Porphyra yezoensis belonging to Florideophycidae were G-ending. An orthologous gene search for the P. yezoensis EST database resulted in the identification of 39 unigenes commonly expressed in two rhodophytes, which have putative functions for structural proteins, protein degradation, signal transduction, stress response, and physiological processes. Although experiments have been conducted on a limited scale, this study provides a material basis for the development of microarrays useful for gene expression studies, as well as useful information for the comparative genomic analysis of red algae.

A Study on the Development of Industrial Clusters in the International Science and Business Belt through the Industrial Clustering Analysis (산업 클러스터링 분석을 통한 국제과학비즈니스벨트의 클러스터 발전 방향 연구)

  • Jung, Hye-Jin;Og, Joo-Young;Kim, Byung-Keun;Ji, Il-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.370-379
    • /
    • 2018
  • The Korean government announced plans for the International Science Business Belt as a spatial area for promoting the linkage between scientific knowledge and commercialization in 2009. R&D and entrepreneurial activities are essential for the success of the International Science Business Belt. In particular, prioritizing the types of businesses is critical at the cluster establishment stage in that this largely affects the features and development of clusters comprising the International Science Business Belt. This research aims to predict the entry and growth of firms that specialize in four industrial clusters, including Big Science Cluster, Frontier Cluster, ICT Cluster, and Bio-Healthcare Cluster. For this purpose, we employ the Swann & Prevezer's industrial clustering model to identify sectors that affect the establishment and growth of industrial clusters in the International Science Business Belt, focusing on ICT, Bio-Healthcare and Frontier clusters. Data was collected from the 2014 Korean Innovation Survey (KIS) and University Alimi for the ICT cluster, 2014 National Bio Industry Survey and University Alimi for the Bio-Healthcare Cluster, and the 2015 National Nano Convergent Industry Survey and Annual Report of Nano Technology for the Frontier cluster. Empirical results show that the ICT service sector, bio process/equipment sector, and Nano electronic sector promote clustering in other sectors. Based on the analysis results, we discuss several policy implications and strategies that can attract relevant firms for the development of industrial clusters.

Characteristics of the Co-Combustion of Coal and Bio-Solid Fuel using Biomass as an adjunct (석탄과 보조제로 바이오매스를 사용한 바이오 고형연료의 혼소 특성)

  • Hyeon, Wan-Su;Jin, Yong-Gyun;Jo, Eun-Ji;Han, Hyun-Goo;Min, Seon-Ung;Yeo, Woon-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.49-57
    • /
    • 2020
  • Due to the sewage sludge's characteristics of high water content and low calorific value, it is hard to use sewage sludge as an energy source. In this study, we investigated production of bio-solid fuel which is mixed both sewage sludge and woody biomass in order to improve the sewage sludge's characteristics and replace fossil fuels. A thermogravimetric analysis was used to investigate the co-combustion characteristics of the mixed coal and bio-solid fuel of 5%, 10%, 15%, respectively. The analysis was carried out under non-isothermal conditions by raising the internal temperature of 25℃ to 900℃ with an increment of 10℃/min. In the case of comparing single coal sample and mixture sample of coal and bio-solid fuel, the initiation combustion temperature has slightly changed. However, both the maximum combustion temperature and the termination start combustion temperature were hardly noticeable. The initiation combustion was occurred between 200~315℃ and the thermal decomposition causing a significant weight change occurred between 350~700℃. As a result of the kinetic analysis of the co-combustion, the activation energy was decreased as the mixing rate was higher. Therefore, it is able to co-combust the mixed coal and bio-solid fuel in power plants.

Optimization of Indole-3-Acetic production by phosphate solubilization bacteria isolated from waste mushroom bed of Agaricus bisporus

  • Walpola, Buddhi Charana;Noh, Jae-Geun;Kim, Chan Kyem;Kyung, Ki-Cheon;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.11 no.2
    • /
    • pp.53-62
    • /
    • 2013
  • A total of 35 phosphate solubilizing bacterial strains were isolated from waste mushroom bed of Agaricus bisporus in Buyeo-Gun, Chungnam and screened for the production of indole acetic acid (IAA). The best IAA producing strain was identified as Pantoea rodasii using 16S rRNA analysis. In addition to the IAA production, this strain could act as an efficient phosphate solubilizer (1100 ${\mu}g$ $ml^{-1}$ after 5 days of incubation) also. The selected strain was cultured under different conditions in order to assess the optimum conditions for maximum IAA production. The nutrient broth (NB) medium was recorded as the best medium, where the maximum IAA production (229 ${\mu}g$ $ml^{-1}$) was recorded at the start of stationary phase (12 hours after inoculation) of the bacteria growth. The performance of the strain was found to be maximum at the temperature of $30^{\circ}C$ followed by $25^{\circ}C$. IAA production was found to be increased with increasing tryptophan concentration (from 0.1 to 0.6%), however beyond this limit, a slight reduction in IAA production was observed. The strains' ability to produce IAA was further confirmed by extraction of crude IAA and subsequent TLC analysis. A specific spot from the extracted IAA preparation was found corresponding with the standard spot of IAA with same $R_f$ value. The results of HPLC analysis conducted in identifying and quantifying the IAA production more precisely, are in agreement with the results of the assessment done with colorimetric method. As revealed by the results of the pot experiment, the isolated strain could significantly enhance the growth (as measured by shoot and root growth) of mung bean plants compared to that of non-inoculated plants. Therefore it can be concluded that the present strain, Pantoea rodasii has great potential to be used as bio-inoculants.