Browse > Article
http://dx.doi.org/10.5478/MSL.2021.12.4.192

Molecular Characterization of Dissolved Organic Matter Unveils their Complexity, Origin, and Fate in Glacier and Glacial-Fed Streams and Lakes on the Tibetan Plateau  

Kim, Min Sung (Bio-Chemical Analysis Team, Korea Basic Science Institute)
Zhou, Lei (State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences)
Choi, Mira (Bio-Chemical Analysis Team, Korea Basic Science Institute)
Zhang, Yunlin (State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences)
Zhou, Yongqiang (State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences)
Jang, Kyoung-Soon (Bio-Chemical Analysis Team, Korea Basic Science Institute)
Publication Information
Mass Spectrometry Letters / v.12, no.4, 2021 , pp. 192-199 More about this Journal
Abstract
Alpine glaciers harbor a large quantity of bio-labile dissolved organic matter (DOM), which plays a pivotal role in global carbon cycling as glacial-fed streams are headwaters of numerous large rivers. To understand the complexity, origin, and fate of DOM in glaciers and downstream-linked streams and lakes, we elucidated the molecular composition of DOM in two different Tibetan Plateau glaciers, eight glacial-fed streams and five lakes, using an ultrahigh-resolution 15 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The compositional changes of the DOM samples revealed that glacier DOM mostly exhibited sulfur-containing organic compounds (CHOS species). We also found that aliphatic formulae contributed more than 50% of the total abundance of assigned molecules in glacier samples, and those compounds were significantly related to CHOS species. The CHO proportions of glacial-fed streams and lakes samples increased with increasing distance from glacial terminals. The relative contribution of terrestrial-derived organics (i.e., lignins and tannins) declined while microbial-originated organics (aliphatics) increased with increasing elevation. This suggested the gradual input of allochthonous materials from non-glacial environment and the degradation of microbe-derived compounds along lower elevations. Alpine glaciers are retreating as a result of climate change and they nourished numerous streams, rivers, and downstream-linked lakes. Therefore, the interpretations of the detailed molecular changes in glacier ice, glacial-fed streams, and alpine lakes on the Tibetan Plateau could provide broad insights for understanding the biogeochemical cycling of glacial DOM and assessing how the nature of DOM impacts fluvial ecosystems.
Keywords
Tibetan Plateau; FT-ICR MS; dissolved organic matter; fluvial ecosystem; elevation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Singer, G. A.; Fasching, C.; Wilhelm, L.; Niggemann, J.; Steier, P.; Dittmar, T.; Battin, T. J. Nat. Geosci. 2012, 5, 710, DOI: 10.1038/ngeo1581.   DOI
2 Hu, R.; Xu, Q.; Wang, S.; Hua, Y.; Bhattarai, N.; Jiang, J.; Song, Y.; Hao, J. J. Environ. Sci. 2020, 95, 99, DOI:10.1016/j.jes.2020.04.004.   DOI
3 Mazur, D. M.; Harir, M.; Schmitt-Kopplin, P.; Polyakova, O. V.; Lebedev, A. T. Sci. Total Environ. 2016, 557-558, 12, DOI: 10.1016/j.scitotenv.2016.02.178.   DOI
4 Zhou, Y.; Zhou, L.; He, X.; Jang, K. S.; Yao, X.; Hu, Y.; Zhang, Y.; Li, X.; Spencer, R. G. M.; Brookes, J. D.; Jeppesen, E. Environ. Sci. Technol. 2019, 53, 12207, DOI:10.1021/acs.est.9b03348.   DOI
5 Kim, S.; Kramer, R. W.; Hatcher, P. G. Anal. Chem. 2003, 75, 5336, DOI: 10.1021/ac034415p.   DOI
6 Zhou, Y.; Davidson, T. A.; Yao, X.; Zhang, Y.; Jeppesen, E.; de Souza, J. G.; Wu, H.; Shi, K.; Qin, B. Earth-Sci. Rev. 2018, 185, 928, DOI: 10.1016/j.earscirev.2018.08.013.   DOI
7 R Core Team. 2013, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
8 Stubbins, A.; Hood, E.; Raymond, P. A.; Aiken, G. R.; Sleighter, R. L.; Hernes, P. J.; Butman, D.; Hatcher, P. G.; Striegl, R. G.; Schuster, P.; Abdulla, H. A. N.; Vermilyea, A. W.; Scott, D. T.; Spencer, R. G. M. Nat. Geosci. 2012, 5, 198, DOI: 10.1038/ngeo1403.   DOI
9 Skidmore, M. L.; Foght, J. M.; Sharp, M. J. Appl. Environ. Microbiol. 2000, 66, 3214, DOI: 10.1128/AEM.66.8.3214-3220.2000.   DOI
10 Anesio, A. M.; Hodson, A. J.; Fritz, A.; Psenner, R.; Sattler, B. Glob. Change Biol. 2009, 15, 955, DOI:10.1111/j.1365-2486.2008.01758.x.   DOI
11 Liu, K.; Liu, Y.; Han, B. P.; Xu, B.; Zhu, L.; Ju, J.; Jiao, N.; Xiong, J. Sci. Total Environ. 2018, 651, 2059, DOI:10.1016/j.scitotenv.2018.10.104.   DOI
12 Ohno, T.; Parr, T. B.; Gruselle, M. C.; Fernandez, I. J.; Sleighter, R. L.; Hatcher, P. G. Environ. Sci. Technol. 2014, 48, 7229, DOI: 10.1021/es405570c.   DOI
13 Choi, J. H.; Kim, Y. G.; Lee, Y. K.; Pack, S. P.; Jung, J. Y.; Jang, K. S. Biotechnol. Bioprocess Eng. 2017, 22, 637, DOI: 10.1007/s12257-017-0121-4.   DOI
14 Musilova, M.; Tranter, M.; Wadham, J.; Telling, J.; Tedstone, A.; Anesio, A. M. Nat. Geosci. 2017, 10, 360, DOI: 10.1038/ngeo2920.   DOI
15 Feng, L.; Xu, J.; Kang, S.; Li, X.; Li, Y.; Jiang, B.; Shi, Q. Environ. Sci. Technol. 2016, 50, 13215, DOI: 10.1021/acs.est.6b03971.   DOI
16 Smith, H. J.; Foster, R. A.; McKnight, D. M.; Lisle, J. T.; Littmann, S.; Kuypers, M. M. M.; Foreman, C. M. Nat. Geosci. 2017, 10, 356, DOI: 10.1038/ngeo2925.   DOI
17 Barker, J. D.; Dubnick, A.; Lyons, W. B.; Chin, Y. P. Arct. Antarct. Alp. Res. 2013, 45, 305, DOI: 10.1657/1938-4246-45.3.305.   DOI
18 Barker, J. D.; Sharp, M. J.; Fitzsimons, S. J.; Turner, R. J. Arct. Antarct. Alp. Res. 2006, 38, 163, DOI: 10.1657/1523-0430(2006)38[163:Aadodo]2.0.Co;2.   DOI
19 Hood, E.; Fellman, J.; Spencer, R. G.; Hernes, P. J.; Edwards, R.; D'Amore, D.; Scott, D. Nature 2009, 462, DOI: 1044, 10.1038/nature08580.   DOI
20 Kellerman, A. M.; Kothawala, D. N.; Dittmar, T.; Tranvik, L. J. Nat. Geosci. 2015, 8, 454, DOI: 10.1038/ngeo2440.   DOI
21 Boetius, A.; Anesio, A. M.; Deming, J. W.; Mikucki, J. A.; Rapp, J. Z. Nat. Rev. Microbiol. 2015, 13, 677, DOI:10.1038/nrmicro3522.   DOI
22 Hood, E.; Fellman, J.; Spencer, R. G. M.; Hernes, P. J.; Edwards, R.; D'Amore, D.; Scott, D. Nature 2009, 462, 1044, DOI: 10.1038/nature08580.   DOI
23 Feng, L.; An, Y.; Xu, J.; Li, X.; Jiang, B.; Liao, Y. Sci. Rep. 2020, 10, 6123, DOI: 10.1038/s41598-020-62851-w.   DOI
24 Collins, D. N. Ann. Glaciol. 2008, 48, 119, DOI: 10.3189/172756408784700761.   DOI
25 Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; Pu, J.; Lu, A.; Xiang, Y.; Kattel, D. B.; Joswiak, D. Nat. Clim. Chang. 2012, 2, 663, DOI: 10.1038/nclimate1580.   DOI
26 Choi, M.; Choi, A. Y.; Ahn, S. Y.; Choi, K. Y.; Jang, K. S. Mass Spectrom. Lett. 2018, 9, 81, DOI: 10.5478/MSL.2018.9.3.81.   DOI
27 Hockaday, W. C.; Grannas, A. M.; Kim, S.; Hatcher, P. G. Org. Geochem. 2006, 37, 501, DOI: 10.1016/j.orggeochem.2005.11.003.   DOI
28 Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J. M.; Parlanti, E. Org. Geochem. 2009, 40, 706, DOI: 10.1016/j.orggeochem.2009.03.002.   DOI
29 Choi, J. H.; Ryu, J.; Jeon, S.; Seo, J.; Yang, Y. H.; Pack, S. P.; Choung, S.; Jang, K. S. Environ. Pollut. 2017, 225, 329, DOI: 10.1016/j.envpol.2017.02.058.   DOI
30 Choi, J. H.; Jang, E.; Yoon, Y. J.; Park, J. Y.; Kim, T. W.; Becagli, S.; Caiazzo, L.; Cappelletti, D.; Krejci, R.; Eleftheriadis, K.; Park, K. T.; Jang, K. S. Glob. Biogeochem. Cycle 2019, 33, 1238, DOI: 10.1029/2019GB006226.   DOI
31 Jeong, H. J.; Cha, J. Y.; Choi, J. H.; Jang, K. S.; Lim, J.; Kim, W. Y.; Seo, D. C.; Jeon, J. R. ACS Omega 2018, 3, 7441, DOI: 10.1021/acsomega.8b00697.   DOI
32 Spencer, R. G. M.; Guo, W.; Raymond, P. A.; Dittmar, T.; Hood, E.; Fellman, J.; Stubbins, A. Geochim. Cosmochim. Acta 2014, 142, 64, DOI: 10.1016/j.gca.2014.08.006.   DOI
33 Zhou, L.; Zhou, Y.; Hu, Y.; Cai, J.; Liu, X.; Bai, C.; Tang, X.; Zhang, Y.; Jang, K. S.; Spencer, R. G. M.; Jeppesen, E. Water Res. 2019, 160, 18, DOI: 10.1016/j.watres.2019.05.048.   DOI
34 Jang, K. S.; Choi, A. Y.; Choi, M.; Kang, H.; Kim, T. W.; Park, K. T. Atmosphere 2019, 10, 226, DOI: 10.3390/atmos10040226.   DOI
35 Koch, B. P.; Dittmar, T. Rapid Commun. Mass Spectrom. 2016, 30, 250, DOI: 10.1002/rcm.7433.   DOI
36 Koch, B. P.; Dittmar, T. Rapid Commun. Mass Spectrom. 2006, 20, 926, DOI: 10.1002/rcm.2386.   DOI
37 Oksanen, J.; Blanchet, F. G.; Kindt, R.; Legendre, P.; Minchin, P. R.; O'Hara, R. B.; Simpson, G. L.; Solymos, P.; Stevens, M. H. H.; Wagner, H. 2014, Vegan: Community Ecology Package. R Package Version 2.2-0.
38 Bagshaw, E. A.; Tranter, M.; Fountain, A. G.; Welch, K.; Basagic, H. J.; Lyons, W. B. Arct. Antarct. Alp. Res. 2013, 45, 440, DOI: 10.1657/1938-4246-45.4.440.   DOI