Browse > Article

Analysis of Expressed Sequence Tags from the Red Alga Griffithsia okiensis  

Lee, Hyoung-Seok (Polar BioCenter, Korea Polar Research Institute (KOPRI), KORDI)
Lee, Hong-Kum (Polar BioCenter, Korea Polar Research Institute (KOPRI), KORDI)
An, Gyn-Heung (Department of Life Science, Pohang University of Science and Technology)
Lee, Yoo-Kyung (Polar BioCenter, Korea Polar Research Institute (KOPRI), KORDI)
Publication Information
Journal of Microbiology / v.45, no.6, 2007 , pp. 541-546 More about this Journal
Abstract
Red algae are distributed globally, and the group contains several commercially important species. Griffithsia okiensis is one of the most extensively studied red algal species. In this study, we conducted expressed sequence tag (ESTs) analysis and synonymous codon usage analysis using cultured G. okiensis samples. A total of 1,104 cDNA clones were sequenced using a cDNA library made from samples collected from Dolsan Island, on the southern coast of Korea. The clustering analysis of these sequences allowed for the identification of 1,048 unigene clusters consisting of 36 consensus and 1,012 singleton sequences. BLASTX searches generated 532 significant hits (E-value <$10^{-4}$) and via further Gene Ontology analysis, we constructed a functional classification of 434 unigenes. Our codon usage analysis showed that unigene clusters with more than three ESTs had higher GC contents (76.5%) at the third position of the codons than the singletons. Also, the majority of the optimal codons of G. okiensis and Chondrus crispus belonging to Bangiophycidae were G-ending, whereas those of Porphyra yezoensis belonging to Florideophycidae were G-ending. An orthologous gene search for the P. yezoensis EST database resulted in the identification of 39 unigenes commonly expressed in two rhodophytes, which have putative functions for structural proteins, protein degradation, signal transduction, stress response, and physiological processes. Although experiments have been conducted on a limited scale, this study provides a material basis for the development of microarrays useful for gene expression studies, as well as useful information for the comparative genomic analysis of red algae.
Keywords
codon usage; expressed sequence tags (ESTs); Gene Ontology (GO); Griffithsia okiensis; Porphyra yezoensis; red alga;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Cho, E.K., Y.K. Lee, and C.B. Hong. 2005. A cyclophilin from Griffithsia japonica has thermoprotective activity and is affected by CsA. Mol. Cells 20, 142-150   PUBMED
2 Da Silva, F.G., A. Iandolino, F. Al-Kayal, M.C. Bohlmann, M.A. Cushman, H. Lim, A. Ergul, R. Figueroa, E.K. Kabuloglu, C. Osborne, J. Rowe, E. Tattersall, A. Leslie, J. Xu, J. Baek, G.R. Cramer, J.C. Cushman, and D.R. Cook. 2005. Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol. 139, 574-597   DOI   ScienceOn
3 Lee, Y.K., S.H. Kim, C.B. Hong, O.-K. Chah, G.H. Kim and I.K. Lee. 1998b. Heat-shock protein 90 may be involved in differentiation of the female gametophytes in Griffithsia japonica (Ceramiales, Rhodophyta). J. Phycol. 34, 1017-1023   DOI   ScienceOn
4 Schechter, V. 1934. Electrical control of rhizoid formation in the red alga, Griffithsia borretiana. J. Gen. Physiol. 18, 1-22   DOI
5 Semon, M., D. Mouchiroud, and L. Duret. 2005. Relationship between gene expression and GC-content in mammals: statistical significance and biological relevance. Hum. Mol. Genet. 14, 421-427   DOI   ScienceOn
6 Sharp, P.M. and W.H. Li. 1987. The codon Adaptation Index - a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281-1295   DOI
7 Susko, E. and A.J. Roger. 2004. Estimating and comparing the rates of gene discovery and expressed sequence tag (EST) frequencies in EST surveys. Bioinformatics 20, 2279-2287   DOI   ScienceOn
8 Zhou, Y.H. and M.A. Ragan. 1995. Characterization of the polyubiquitin gene in the marine red alga Gracilaria verrucosa. Biochim. Biophys. Acta. 1261, 215-222   DOI   PUBMED   ScienceOn
9 Sheffield, W.P., G.C. Shore, and S.K. Randall. 1990. Mitochondrial precursor protein. Effects of 70-kilodalton heat shock protein on polypeptide folding, aggregation, and import competence. J. Biol. Chem. 265, 11069-11076   PUBMED
10 Lee, Y.K., M.S. Hwang, and I.K. Lee. 2001. Sexual differentiation of Griffithsia monilis (Ceramiales, Rhodophyta) in hybrids between female & male thalli. Botanica Marina 44, 547-557   DOI   ScienceOn
11 Fernandez, P., N. Paniego, S. Lew, H.E. Hopp, and R.A. Heinz. 2003. Differential representation of sunflower ESTs in enriched organ-specific cDNA libraries in a small scale sequencing project. BMC Genomics 4, 40
12 Stekel, D.J., Y. Git, and F. Falciani. 2000. The comparison of gene expression from multiple cDNA libraries. Genome Res. 10, 2055-2061   DOI
13 Russell, C.A., M.D. Guiry, A.R. Mcdonald, and D.J. Garbary. 1996. Actin-mediated chloroplast movement in Griffithsia pacifica (Ceramiales, Rhodophyta). Phycol. Res. 44, 57-61   DOI
14 Sun, J., T. Liu, B. Guo, D. Jin, M. Weng, Y. Feng, P. Xu, D. Duan, and B. Wang. 2006. Development of SSR primers from EST sequences and their application in germplasm identification of Porphyra lines (Rhodophyta). Eur. J. Phycol. 41, 329-336   DOI   ScienceOn
15 Bauman, Jr., R.W. and B.R. Jones. 1986. Electrophysiological investigations of the red alga Griffithsia pacifica KYL. J. Phycol. 22, 49-56   DOI
16 Nollen, E.A. and R.I. Morimoto. 2002. Chaperoning signaling pathways: molecular chaperones as stress-sensing 'heat shock' proteins. J. Cell Sci. 115, 2809-2816   PUBMED
17 Lee, Y.K. and H.K. Lee. 2003. Putative histone H2A genes from a red alga, Griffithsia japonica. Algae 18, 191-197   DOI
18 Nikaido, I., E. Asamizu, M. Nakajima, Y. Nakamura, N. Saga, and S. Tabata. 2000. Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res. 7, 223-227   DOI
19 Waaland, S.D. 1978. Parasexually produces hybrids between male and female plants of Griffithsia tenuis C. Agardh, a red alga. Planta (Berl) 138, 65-68   DOI   ScienceOn
20 Lee, Y.K., C.B. Hong, Y. Soh, and I.K. Lee. 2002. A cDNA clone for cyclophilin from Griffithsia japonica (Ceramiales, Rhodophyta) and phylogenetic analysis of cyclophilins. Mol. Cells 13, 12-20   PUBMED
21 Collen, J., V. Roeder, S. Rousvoal, O. Collin, B. Kloareg, and C. Boyen. 2006. An expressed sequence tag analysis of thallus and regenerating protoplasts of Chondrus crispus (Gigartinales, Rhodophyceae) J. Phycol. 42, 104-112   DOI   ScienceOn
22 Hofler, K. 1934. Regenerationsvorgänge bei Griffithsia schousboei. Flora 27, 331-344
23 Hwang, M.S., H.S. Kim, and I.K. Lee. 1991. Regeneration and sexual differentiation of Griffithsia japonica (Ceramiaceae, Rhodophyta) through somatic cell fusion. J. Phycol. 27, 441-447   DOI
24 Asamizu, E., M. Nakajima, Y. Kitade, N. Saga, Y. Nakamura, S. Tabata. 2003. Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. J. Phycol. 39, 923-930   DOI   ScienceOn
25 Altschul, S.F., W. Gish, W. Miller, E.W. Meyers, and D. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410   DOI   PUBMED
26 Lee, Y.K., C.B. Hong, N.-K. Lim, J.-S. So, and I.K. Lee. 1998a. Isolation & characterization of a cDNA encoding 40S ribosomal protein S8 from a red alga, Griffithsia japonica (Ceramiales, Rhodophyta). Algae 13, 157-163
27 Ashburner, M., C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, and G. Sherlock. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 1, 25-29   DOI
28 Goff, L.J. and A.W. Coleman. 1987. The solution to the cytological paradox of isomorphy. J. Cell Biol. 104, 739-748   DOI
29 Kakinuma, M., I. Kaneko, D. Coury, T. Suzuki, and H. Amano. 2006. Isolation and identification of gametogenesis-related genes in Porphyra yezoensis (Rhodophyta) were identified using subtracted cDNA libraries. J. Appl. Phycol. 18, 489-496   DOI
30 Teo, S.-S., C.-L. Ho, S. Teoh, W.-W. Lee, J.-M. Tee, R.A. Rahim, and S.-M. Phang. 2007. Analyses of expressed sequence tags from an agarophyte, Gracilaria changii (Gracilariales, Rhodophyta). Eur. J. Phycol. 42, 41-46   DOI   ScienceOn
31 Myers, A., R.D. Preston, and G.W. Ripley. 1956. Fine structure in the red algae. I. X-ray & electron microscope investigation of Griffithsia flosculosa. Proc. Roy. Soc. B. 144, 450-459
32 Kim, H.S., E.C. Yang, and S.M. Boo. 2006. The occurrence of Griffithsia okiensis (Ceramiaceae, Rhodophyta) from Korea on the basis of morphology and molecular data. Algae 21, 91-101   DOI
33 Lee, H., C.G. Hur, C.J. Oh, H.B. Kim, S.Y. Park, and C.S. An. 2004. Analysis of the root nodule-enhanced transcriptome in soybean. Mol. Cells 18, 53-62   PUBMED
34 Lluisma, A.O. and M. Ragan. 1997. Expressed sequence tags (ESTs) from the marine red alga Gracilaria gracilis. J. Appl. Phycol. 9, 287-293   DOI
35 PeyrieRe, M. 1970. Evolution de l'appareil de Golgi de la tetrasporogenese de Griffithsia flosculosa (Rhodophycee). C. R. Acad. Sci. Paris, Ser. D. 270, 2071-2074
36 Lee, Y.K., H.-G. Choi, C.B. Hong, and I.K. Lee. 1995. Sexual differentiation of Griffithsia (Ceramiales, Rhodophyta): nuclear ploidy level of mixed-phase plants in G. japonica. J. Phycol. 31, 668-673   DOI   ScienceOn
37 Johnson, E.S., B. Bartel, W. Seufert, and A. Varshavsky. 1992. Ubiquitin as a degradation signal. EMBO J. 11, 497-505   PUBMED