• Title/Summary/Keyword: Bio-Function

Search Result 793, Processing Time 0.034 seconds

Optimization of Fermentation Condition for Red Ginseng Wine Using Response Surface Methodology. (반응표면분석을 이용한 홍삼주 발효조건 최적화)

  • Kim, Seong-Ho;Kang, Bok-Hee;Noh, Sang-Gyun;Kim, Jong-Guk;Lee, Sang-Han;Lee, Jin-Man
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.556-564
    • /
    • 2008
  • Response surface methodology was used to monitor the optimization of fermentation conditions for red ginseng wine. A central composite design was applied to investigate the effects of independent variables, fermentation temperature ($X_1$), fermentation time ($X_2$) and initial pH ($X_3$) on dependent variables, physicochemical characteristics and effective ingredients. Alcohol and total sugar content were significantly affected both by fermentation temperature and time. Crude saponin content was greatly affected by fermentation time, and pH was significantly affected by initial pH. Fermentation time and initial pH had a greater effect on ginsenoside content than fermentation temperature. Ginsenoside content increased along with fermentation time and initial pH. We elicited a regression formula for each variable, and superimposed the total optimum points of fermentation conditions for physicochemical characteristics and the effective constituents. The predicted values at the optimum fermentation conditions were at $21{\sim}27^{\circ}C$ for $15{\sim}20$ day in initial pH $4.6{\sim}5.2$.

Screeening of Natural Plant Resources with Acetylcholine esterase inhibitory activity and Effect on Scopolamine-induced Memory Impairment (천연식물자원으로부터 Acetylcholine esterase 저해 활성 탐색 및 인지기능에 미치는 영향)

  • Choi, Jang Won;Won, Mu-Ho;Joo, Han-Seung
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.213-226
    • /
    • 2011
  • This study was performed to investigate the effect of essential oils and ethanolic extracts of approximately 650 plant species on acetylcholine esterase (AChE) enzyme activity using Ellman's colorimetric method in 96-well microplates. The results showed that the ethanolic extracts from twig of Sophora subprostrata, twig of Phellodendron amurense, seed of Corylopsis coreana, and essential oil (EO) from Citrus paradisi, Cupressus sempervirens, Ocimum basilicum, Pinus sylvestris and Rosmarinus officinalis inhibited more than 80% of AChE activity. Among these, EO from Pinus sylvestris, C. sempervirens and C paradisi exhibited higher values of AChE inhibitory activity, which were 75, 84 and 99% at a concentration of 50 ug/ml, respectively. Finally, EO from C paradisi (grapefruit, GEO) showed the highest inhibitory activity towards AChE, which showed 91% of inhibition at a concentration of 20 ug/ml. We also examined the anti-dementia effects of GEO in mouse by passive avoidance test and Morris water maze test. The model mouse (male, ICR) of dementia (negative control) was induced by administration of scopolamine (1 mg/kg body weight). The latency time of sample group administrated with GEO (100 mg/kg, p.o.) increased significantly as compared with negative control on passive avoidance test. There were significant recovery from the scopolamine-induced deficits on learning and memory in water maze test through daily administrations with GEO (100 mg/kg, p.o.). From these results, we conclude that GEO treatment might enhance the cognitive function, suggesting that the EO of C. paradis may be a potential candidate for improvement of perceptive ability and dementia.

Regulation of toll-like receptors expression in muscle cells by exercise-induced stress

  • Park, Jeong-Woong;Kim, Kyung-Hwan;Choi, Joong-Kook;Park, Tae Sub;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1590-1599
    • /
    • 2021
  • Objective: This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods: The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results: The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion: In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.

Saliency Attention Method for Salient Object Detection Based on Deep Learning (딥러닝 기반의 돌출 객체 검출을 위한 Saliency Attention 방법)

  • Kim, Hoi-Jun;Lee, Sang-Hun;Han, Hyun Ho;Kim, Jin-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.39-47
    • /
    • 2020
  • In this paper, we proposed a deep learning-based detection method using Saliency Attention to detect salient objects in images. The salient object detection separates the object where the human eye is focused from the background, and determines the highly relevant part of the image. It is usefully used in various fields such as object tracking, detection, and recognition. Existing deep learning-based methods are mostly Autoencoder structures, and many feature losses occur in encoders that compress and extract features and decoders that decompress and extend the extracted features. These losses cause the salient object area to be lost or detect the background as an object. In the proposed method, Saliency Attention is proposed to reduce the feature loss and suppress the background region in the Autoencoder structure. The influence of the feature values was determined using the ELU activation function, and Attention was performed on the feature values in the normalized negative and positive regions, respectively. Through this Attention method, the background area was suppressed and the projected object area was emphasized. Experimental results showed improved detection results compared to existing deep learning methods.

Butyrate Ameliorates Lipopolysaccharide-induced Myopathy through Inhibition of JNK Pathway and Improvement of Mitochondrial Function in C2C12 Cells (C2C12 세포에서 lipopolysaccharide에 의해 유도된 근육위축증에 대한 butyrate의 개선효과: JNK 신호전달 억제와 미토콘드리아의 기능 개선)

  • Pramod, Bahadur KC;Kang, Bong Seok;Jeoung, Nam Ho
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.464-474
    • /
    • 2021
  • Inflammation induced by metabolic syndromes, cancers, injuries, and sepsis can alter cellular metabolism by reducing mitochondrial function via oxidative stress, thereby resulting in neuropathy and muscle atrophy. In this study, we investigated whether butyrate, a short chain fatty acid produced by gut microbiota, could prevent mitochondrial dysfunction and muscle atrophy induced by lipopolysaccharide (LPS) in the C2C12 cell line. LPS-activated MAPK signaling pathways increased the levels of the mitochondrial fission signal, p-DRP1 (Ser616), and the muscle atrophy marker, atrogin 1. Interestingly, butyrate significantly inhibited the phosphorylation of JNK and p38 and reduced the atrogin 1 level in LPS-treated C2C12 cells while increasing the phosphorylation of DRP1 (Ser637) and levels of mitofusin2, which are both mitochondrial fusion markers. Next, we investigated the effect of MAPK inhibitors, finding that butyrate had the same effect as JNK inhibition in C2C12 cells. Also, butyrate inhibited the LPS-induced expression of pyruvate dehydrogenase kinase 4 (PDK4), resulting in decreased PDHE1α phosphorylation and lactate production, suggesting that butyrate shifted glucose metabolism from aerobic glycolysis to oxidative phosphorylation. Finally, we found that these effects of butyrate on LPS-induced mitochondrial dysfunction were caused by its antioxidant effects. Thus, our findings demonstrate that butyrate prevents LPS-induced muscle atrophy by improving mitochondrial dynamics and metabolic stress via the inhibition of JNK phosphorylation. Consequently, butyrate could be used to improve LPS-induced mitochondrial dysfunction and myopathy in sepsis.

Skin Barrier Function Enhancement Effect about Ceramide Liquid Crystal Emulsion: Similar Ratio of Skin Lipid Composition (피부 지질 조성 모사 Ceramide 액정 에멀젼의 피부 장벽 강화 효과 확인에 관한 연구)

  • Han, Ji Hye;Lee, Ju Yeon;Lee, Kwan Hyoung;Kim, Hee Sun;Park, Chang Yeol;Maeng, Ji Hye;So, Ji Min;Nam, Gae Won;Kim, Sang Chul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.49-56
    • /
    • 2021
  • In this study, a liquid crystal emulsion with a composition ratio similar to the skin lipid composition was manufactured using ceramide, glycolipids, cholesterol, and fatty acids, and a polarized microscope was used to identify liquid crystal particles in the formulation, and a cryso-SEM was used to confirm the formation of a multilayer structure. The above samples were stored at room temperature for one month and the liquid crystal structure was continuously maintained through microscopic observation. In addition, a cream composition containing liquid crystal emulsion was manufactured, and the efficiency of ceramide skin penetration was confirmed using three-dimensional artificial skin. Clinical trials were conducted using the cream composition and the results of clinical trials on skin barrier improvement were confirmed by measuring skin moisture retention (skin hydration) and transepidermal water loss (T EWL) of subjects compared to general emulsion.

Changes in Leaf and Reproductive Traits of Mountain Ash (Sorbus alnifolia) as Urban Flourisher in the Seoul Metropolitan, South Korea (한국 서울 식생의 번성자로서 팥배나무의 형질 변화 양상)

  • Jung, Song-Hie;Cho, Yong-Chan;Lee, Chang-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.644-658
    • /
    • 2021
  • Understanding the functional traits of dominant species in urban ecosystems provides insight into species' trait adaptation and ecosystem function in response to fragmented and isolated urban vegetation and reduced biological interactions. This study compared means and variances of environmental factors (geographic, meteorological, and soil attributes) and 4 leaf traits (leaf area, specific leaf area, leaf dry mass content, and leaf shape index) and 7 reproductive traits (fruit width, fruit length, fruit shape, fruit dry weight, fruit dry matter content, seed weight, and seed ratio) measured of 40 Sorbus alnifolia individuals in four mountainous areas south of Seoul downtown, South Korea. We then performed the multivariate analysis of trait combinations. While the measured environmental factors indicated the individuality of the survey sites, the urban vegetation was drier and had a longer growth period. The leaves of S. alnifolia in the urban areas were smaller and heavier, and the fruits produced longer and lighter seeds, showing the traits affected by long urbanization. The study confirmed changes in the growth and reproduction mechanism of the S. alnifolia population under the urban environment, indicating reduced biological interaction due to vegetation fragmentation and isolation. This study provides limited but distinct ecological information about the function and persistence of key species in cities with a reduced scale of biological interactions and many negative environmental factors such as air pollution.

Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy

  • Kyeong Eun Yang;Soo-Bin Nam;Minsu Jang;Junsoo Park;Ga-Eun Lee;Yong-Yeon Cho;Byeong-Churl Jang;Cheol-Jung Lee;Jong-Soon Choi
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.337-346
    • /
    • 2023
  • Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-I to LC3-II and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.

Expression of CsRCI2s by NaCl stress reduces water and sodium ion permeation through CsPIP2;1 in Camelina sativa L.

  • Kim, Hyun-Sung;Lim, Hyun-Gyu;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.194-194
    • /
    • 2017
  • Camelina (Camelina sativa L.) is a potential bio-energy crop that has short life cycle about 90 days and contains high amount of unsaturated fatty acid which is adequate to bio-diesel production. Enhancing environmental stress tolerance is a main issue to increase not only crop productivity but also big mass production. CsRCI2s (Rare Cold Inducible 2) are cold and salt stress related protein that localized at plasma membrane (PM) and assume to be membrane potential regulation factor. These proteins can be divide into C-terminal tail (CsRCI2D/E/F/G) or no-tail group (CsRCI2A/B/C/H). However, function of CsRCI2s are less understood. In this study, physiological responses and functional characterization of CsRCI2s of Camelina under salt stress were analyzed. Full-length CsRCI2s (A/B/E/F) and CsPIP2;1 sequences were confirmed from Camelina genome browser. Physiological investigations were carried out using one- or four-week-old Camelina under NaCl stress with dose and time dependent manner. Transcriptional changes of CsRCI2A/B/E/F and CsPIP2;1 were determined using qRT-PCR in one-week-old Camelina seedlings treated with NaCl. Translational changes of CsRCI2E and CsPIP2;1 were confirmed with western-blot using the antibodies. Water transport activity and membrane potential measurement were observed by cRNA injected Xenopus laevis oocyte. As results, root growth rate and physiological parameters such as stomatal conductance, chlorophyll fluorescence, and electrolyte leakage showed significant inhibition in 100 and 150 mM NaCl. Transcriptional level of CsPIP2;1 did not changed but CsRCI2s were significantly increased by NaCl concentration, however, no-tail type CsRCI2A and CsRCI2B increased earlier than tail type CsRCI2E and CsRCI2F. Translational changes of CsPIP2;1 was constitutively maintained under NaCl stress. But, accumulation of CsRCI2E significantly increased by NaCl stress. CsPIP2;1 and CsRCI2A/B/E/F co-expressed Xenopus laevis oocyte showed decreased water transport activity as 61.84, 60.30, 62.91 and 76.51 % at CsRCI2A, CsRCI2B, CsRCI2E and CsRCI2F co-expression when compare with single expression of CsPIP2;1, respectively. Moreover, oocyte membrane potential was significantly hyperpolarized by co-expression of CsRCI2s. However, higher hyperpolarized level was observed in tail-type CsRCI2E and CsRCI2F than others, especially, CsRCI2E showed highest level. It means transport of $Na^+$ ion into cell is negatively regulated by expression of CsRCI2s, and, function of C-terminal tail is might be related with $Na^+$ ion influx. In conclusion, accumulation of NaCl-induced CsRCI2 proteins are related with $Na^+$ ion exclusion and prevent water loss by CsPIP2;1 under NaCl stress.

  • PDF

Effect of Soil Water Content on Growth, Photosynthetic Rate, and Stomatal Conductance of Kimchi Cabbage at the Early Growth Stage after Transplanting (정식 후 초기 생장기 배추의 생장, 광합성 속도 및 기공전도도에 미치는 토양수분의 영향)

  • Kim, Sung Kyeom;Lee, Hee Ju;Lee, Hee Su;Mun, Boheum;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.151-157
    • /
    • 2017
  • The objectives of this study were to determine the impact of soil water content on the growth, stomatal conductance, and photosynthesis of Kimchi cabbage and to evaluate proper parameters for development of growth models. There were five levels of irrigation amount treatments (0, 200, 300, 400, and 500 mL/d/plant) and those were commenced at one day after transplanting (DAT). We measured soil water content, stomatal conductance, photosynthesis characteristics, and the A-Ci curve. The growth of Kimchi cabbage as affected by irrigation amount was evaluated at 38 days after transplanting, however, the growth with 0 and 200 mL/d/plant irrigation amount treatments measured at 29 DAT. The relationship between soil water content and stomatal conductance was highly correlated ($r^2=0.999$) and the function represented by y = 6097.4x - 4.2984. The stomatal conductance of Kimchi cabbage leaves showed $300mmol{\cdot}m^{-2}{\cdot}s^{-1}$ when the soil water content was below $0.05m^3/m^3$. The stomatal conductance was rapidly decreased by scarcity of soil moisture. A-Ci curve indicated normal curve in fully irrigation treatment (500 mL/d/plant), however, $CO_2$ couldn't diffuse through the intercellular Kimchi cabbage leaves treated with 0 mL/d/plant. The dry weight of full irrigation treatment was greater approximately 6.8 times than that of deficit irrigation (0 mL/d/plant). In addition, leaf area index showed a logarithmic function (y = 16.573 + 3.398 ln x) with soil water content and that of R-squared represents 0.913. Results indicated that the soil water content was highly correlated with stomatal conductance and leaf area index. Indeed, the scarcity soil moisture reduced photosynthesis and retarded growth.