DOI QR코드

DOI QR Code

Changes in Leaf and Reproductive Traits of Mountain Ash (Sorbus alnifolia) as Urban Flourisher in the Seoul Metropolitan, South Korea

한국 서울 식생의 번성자로서 팥배나무의 형질 변화 양상

  • Jung, Song-Hie (Gardens and Education Research Division, Korea National Arboretum) ;
  • Cho, Yong-Chan (Gwangneung Forest Conservation Center, Korea National Arboretum) ;
  • Lee, Chang-Seok (Division of Chemistry and Bio-Environmental Sciences, Seoul Women's Univ.)
  • 정성희 (국립수목원 전시교육연구과) ;
  • 조용찬 (국립수목원 광릉숲보전센터) ;
  • 이창석 (서울여자대학교 화학생명환경과학부)
  • Received : 2021.11.13
  • Accepted : 2021.12.06
  • Published : 2021.12.31

Abstract

Understanding the functional traits of dominant species in urban ecosystems provides insight into species' trait adaptation and ecosystem function in response to fragmented and isolated urban vegetation and reduced biological interactions. This study compared means and variances of environmental factors (geographic, meteorological, and soil attributes) and 4 leaf traits (leaf area, specific leaf area, leaf dry mass content, and leaf shape index) and 7 reproductive traits (fruit width, fruit length, fruit shape, fruit dry weight, fruit dry matter content, seed weight, and seed ratio) measured of 40 Sorbus alnifolia individuals in four mountainous areas south of Seoul downtown, South Korea. We then performed the multivariate analysis of trait combinations. While the measured environmental factors indicated the individuality of the survey sites, the urban vegetation was drier and had a longer growth period. The leaves of S. alnifolia in the urban areas were smaller and heavier, and the fruits produced longer and lighter seeds, showing the traits affected by long urbanization. The study confirmed changes in the growth and reproduction mechanism of the S. alnifolia population under the urban environment, indicating reduced biological interaction due to vegetation fragmentation and isolation. This study provides limited but distinct ecological information about the function and persistence of key species in cities with a reduced scale of biological interactions and many negative environmental factors such as air pollution.

도시 생태계에서 우점 수종의 형질 특성은 분획화 및 고립된 식생, 그리고 생물상호작용 감소 등 환경 변화에 대한 종의 형질 적응과 생태계 기능에 대한 통찰력을 제공한다. 우리는 한국의 서울 중심에서 남쪽 방향의 4개 산지에서 환경 요인 (지리, 기상 및 토양 속성)을 포함하여 모두 40개체 팥배나무 (Sorbus alnifolia)에서 측정한 4개 유형의 잎 형질 (Leaf area, Specific leaf area, Leaf dry mass content, Leaf shape index)과 7개 유형의 번식 형질 (Fruit width, Fruit length, Fruit shape, Fruit dry weight, Fruit dry matter content, Seed weight 및 Seed ratio)의 평균과 분산 양상, 그리고 형질 조합에 대한 다변량 분석을 실시하였다. 측정된 환경 요인은 조사 장소의 개별성을 나타내었지만, 도심 식생이 더 건조하고 생장도일이 길었다. 도심에서 팥배나무의 잎은 작고 무거워지며, 열매는 길쭉하고 가벼운 종자를 생산하여, 오랜 도시화 영향에 따른 형질 반응들이 관찰되었다. 우리의 연구는 식생 파편화 및 고립화에 따른 생물 상호작용 감소를 나타내는 도심 환경에서 팥배나무 집단의 성장 및 번식 기제의 변화를 확인하였다. 우리는 축소된 생물 상호작용 규모, 그리고 대기 오염 같은 부정적 환경 요인이 많은 도시에서 핵심 수종의 기능과 지속성에 관해 제한적이지만 뚜렷한 생태 정보를 제공한다.

Keywords

Acknowledgement

이 논문은 국립수목원 연구사업(KNA1-2-32, 18-3; KNA1-2-26, 16-4) 및 서울여자대학교 교내연구비에 의하여 연구되었음.

References

  1. Ahern, J.(2016) Novel urban ecosystems: Concepts, definitions and a strategy to support urban sustainability and resilience. Landscape Architecture Frontiers 4(1): 10-22.
  2. Albert, C.H., W. Thuiller, N.G. Yoccoz, A. Soudant, F. Boucher, P. Saccone and S. Lavorel(2010) Intraspecific functional variability: Extent, structure and sources of variation. Journal of Ecology 98(3): 604-613. https://doi.org/10.1111/j.1365-2745.2010.01651.x
  3. Albrecht, J., E.L. Neuschulz and N. Farwig(2012) Impact of habitat structure and fruit abundance on avian seed dispersal and fruit predation. Basic and Applied Ecology 13(4): 347-354. https://doi.org/10.1016/j.baae.2012.06.005
  4. Aronson, M.F., C.H. Nilon, C.A. Lepczyk, T.S. Parker, P.S. Warren, S.S. Cilliers and M. Katti(2016) Hierarchical filters determine community assembly of urban species pools. Ecology 97(11): 2952-2963. https://doi.org/10.1002/ecy.1535
  5. Bednorz, L.(2007) Morphological variability of fruits and seeds of Sorbus torminalis in Poland. Dendrobiology 57: 3-14.
  6. Blendinger, P.G., E. Martin, O. Osinaga Acosta, R.A. Ruggera and E. Araoz(2016) Fruit selection by A ndean forest birds: Influence of fruit functional traits and their temporal variation. Biotropica 48(5): 677-686. https://doi.org/10.1111/btp.12329
  7. Borowy, D. and C.M. Swan(2020) A multi-trait comparison of an urban plant species pool reveals the importance of intraspecific trait variation and its influence on distinct functional responses to soil quality. Frontiers in Ecology and Evolution 8: 68. https://doi.org/10.3389/fevo.2020.00068
  8. Chapin, F.S., E. Fernandez and D.R. Zak(2013) Proactive ecology for the AnthropoceneProactive ecology for the Anthropocene. Elementa: Science of the Anthropocene, 1pp. https://doi.org/10.1525/elementa.339
  9. Cho, H. and M. Choi(2003) Vegetation composition and structure of Sorbus alnifolia-natived forests in South Korea [Articles: Vegetation Composition and Structure of Sorbus alnifolia-Natived Forests in South Korea]. Journal of Korean Forest Society 92(5): 444-450. http://kiss.kstudy.com/thesis/thesisview.asp?g=kissmeta&m=exp&enc=3CAEE09DABA08FB0C5FFF424462551FD (in Korean with English abstract)
  10. Cho, H.J. and C.S. Lee(1998) Ecological Diagnosis and Development of Ecological Management System of Urban Forest. Korean J. Ecol. 21(6): 779-789. (in Korean with English abstract)
  11. Cho, Y.C., H.J. Cho and C.S. Lee(2009) Urban thermo-profiles and community structure of Quercus mongolica forests along an urban-rural land use gradient: Implications for management and restoration of urban ecosystems. Journal of Ecology and Environment 32(3): 167-176. https://doi.org/10.5141/JEFB.2009.32.3.167
  12. Cho, Y.C., N.S. Kim and B.Y. Koo(2018) Changed land management policy and the emergence of a novel forest ecosystem in South Korea: Landscape dynamics in Pohang over 90 years. Ecological Research 33(2): 351-361. doi:10.1007/s11284-017-1537-1
  13. Cho, Y.C., S. Jung, D.H. Lee, H.G. Kim and J.H. Kim(2020) Forest of Korea (VI) Biogeography of Korea: Flora and vegetation. Sumeungil.
  14. Cochard, A., J. Pithon, F. Braud, V. Beaujouan, A. Bulot and H. Daniel(2019) Intraspecific trait variation in grassland plant communities along urban-rural gradients. Urban Ecosystems 22(3): 583-591. https://doi.org/10.1007/s11252-019-0827-5
  15. Da Silveira Pontes, L., F. Louault, P. Carrere, V. Maire, D. Andueza and J.F. Soussana(2010) The role of plant traits and their plasticity in the response of pasture grasses to nutrients and cutting frequency. Annals of Botany 105(6): 957-965. https://doi.org/10.1093/aob/mcq066
  16. Desaegher, J., S. Nadot, N. Machon and B. Colas(2019) How does urbanization affect the reproductive characteristics and ecological affinities of street plant communities? Ecology and Evolution 9(17): 9977-9989. doi:10.1002/ece3.5539
  17. Duncan, R.P. and J.R. Young(2000) Determinants of plant extinction and rarity 145 years after European settlement of Auckland, New Zealand. Ecology 81(11): 3048-3061. https://doi.org/10.1890/0012-9658(2000)081[3048:DOPEAR]2.0.CO;2
  18. Dwyer, J.M., R.J. Hobbs and M.M. Mayfield(2014) Specific leaf area responses to environmental gradients through space and time. Ecology 95(2): 399-410. https://doi.org/10.1890/13-0412.1
  19. Edwards, W.(2006) Plants reward seed dispersers in proportion to their effort: the relationship between pulp mass and seed mass in vertebrate dispersed plants. Evolutionary Ecology 20(4): 365-376. https://doi.org/10.1007/s10682-006-0006-z
  20. Eggenberger, H., D. Frey, L. Pellissier, J. Ghazoul, S. Fontana and M. Moretti(2019) Urban bumblebees are smaller and more phenotypically diverse than their rural counterparts. Journal of Animal Ecology 88(10): 1522-1533. https://doi.org/10.1111/1365-2656.13051
  21. Fonturbel, F.E. and R. Medel(2017) Frugivore-mediated selection in a habitat transformation scenario. Scientific Reports 7(1): 1-10. https://doi.org/10.1038/s41598-016-0028-x
  22. Freedman, B.(1995) Environmental ecology: The ecological effects of pollution, disturbance, and other stresses. Elsevier.
  23. Garnier, E., B. Shipley, C. Roumet and G. Laurent(2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology 15(5): 688-695.doi:10.1046/j.0269-8463.2001.00563.x
  24. Gilman, E. and D. Watson(1994) Sorbus alnifolia Korean Mountain Ash. USDA Forest Service Fact Sheet ST-514.
  25. Jung, S. and Y.C. Cho(2020) Redefining floristic zones in the Korean Peninsula using high-resolution georeferenced specimen data and self-organizing maps. Ecology and Evolution 10(20): 11549-11564. doi:10.1002/ece3.6790
  26. Kennedy, P.L., J.B. Fontaine, R.J. Hobbs, T.N. Johnson, R. Boyle and A.S. Lueders(2018) Do novel ecosystems provide habitat value for wildlife? Revisiting the physiognomy vs. floristics debate. Ecosphere 9(3): e02172. https://doi.org/10.1002/ecs2.2172
  27. Kim, D.J.(2017) Ecology and environment of Chosun dynasty. Pureun-ryeoksa(Blue History Pub).
  28. Kim, E.M., C.W. Kang, S.Y. Lee, K.M. Song and H.K. Won(2016) The Status of Birds Consuming Fruits and Seeds of the Tree and Related Tree Species on Jeju Island, the Republic of Korea. Journal of Environmental Science International 25(5): 635-644. https://doi.org/10.5322/JESI.2016.25.5.635
  29. Kim, M.S., S.H. Kim, J.G. Han, J.Y. Kwon, J.H. Song and H.S. Kim(2014) Multivariate analysis on fruit morphological characteristics and estimation on selection effect of selected individuals of Sorbus alnifolia (Sieb. et Zucc.) K. Koch [Multivariate Analysis on Fruit Morphological Characteristics and Estimation on Selection Effect of Selected Individuals of Sorbus alnifolia (Sieb. et Zucc.) K. Koch]. Journal of Korean Forest Society 103(2): 196-202. (in Korean with English abstract) https://doi.org/10.14578/JKFS.2014.103.2.196
  30. Kim, T.Y. and J.S. Kim(2018) Woody plants of Korean Peninsula. Dolbegae.
  31. Kim, Y.K., S.H. Kim, M.S. Kim, A.Y. Yun, I.H. Park and Y.S. Go(2019). Leaf Morphological Characteristics and Variation of Sorbus alnifolia (Sieb. et Zucc.) K. Koch in 11 Natural Habitats. Korean Journal of Plant Resources 32(1): 29-37. (in Korean with English abstract) https://doi.org/10.7732/KJPR.2019.32.1.029
  32. Kira, T.(1991) Forest ecosystems of east and southeast Asia in a global perspective. Ecological Research 6(2): 185-200. doi:10.1007/BF02347161
  33. Kyle, G. and M.R. Leishman(2009) Functional trait differences between extant exotic, native and extinct native plants in the Hunter River, NSW: A potential tool in riparian rehabilitation. River Research and Applications 25(7): 892-903. https://doi.org/10.1002/rra.1192
  34. Lambers, H. and H. Poorter(2004) Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Advances in Ecological Research 34: 283-362. https://doi.org/10.1016/S0065-2504(03)34004-8
  35. Lee, C., H. Cho, J. Mun, J. Kim and N. Lee(1998) Ecological diagnosis on Mt. Nam in Seoul, Korea [Articles: Ecological Diagnosis on Mt. Nam in Seoul, Korea]. Journal of Ecology and Environment 21(5): 713-721. http://kiss.kstudy.com/thesis/thesis-view.asp?g=kissmeta&m=exp&enc=B1961B84C759 ACEF2198323116F61FD3 (in Korean with English abstract)
  36. Li, Y., G. Zhou and J. Liu(2017) Different Growth and Physiological Responses of Six Subtropical Tree Species to Warming [Original Research]. Frontiers in Plant Science 8(1511). doi:10.3389/fpls.2017.01511
  37. Lim, C.H., J.H. An, S.H. Jung, G.B. Nam, Y.C. Cho, N.S. Kim and C.S. Lee(2018) Ecological consideration for several methodologies to diagnose vegetation phenology. Ecological Research 33(2): 363-377. https://doi.org/10.1007/s11284-017-1551-3
  38. Lin, B.B., D.F.B. Flynn, D.E. Bunker, M. Uriarte and S. Naeem(2011) The effect of agricultural diversity and crop choice on functional capacity change in grassland conversions. Journal of Applied Ecology 48(3): 609-618. doi:10.1111/j.1365-2664.2010.01944.x
  39. Marques, P.S., L.R. Manna, R. Mazzoni and R. El-Sabaawi(2019) Intraspecific trait variation in urban stream ecosystems: Toward understanding the mechanisms shaping urban stream communities. Freshwater Science 38(1): 1-11. https://doi.org/10.1086/701652
  40. McIntyre, S., S. Lavorel, J. Landsberg and T. Forbes(1999) Disturbance response in vegetation-towards a global perspective on functional traits. Journal of Vegetation Science 10(5): 621-630. https://doi.org/10.2307/3237077
  41. McKinney, M.L. and J.L. Lockwood(1999) Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14(11): 450-453. https://doi.org/10.1016/S0169-5347(99)01679-1
  42. Obeso, J.R. and C.M. Herrera(1994) Inter-and intraspecific variation in fruit traits in co-occurring vertebrate-dispersed plants. International Journal of Plant Sciences 155(3): 382-387. https://doi.org/10.1086/297175
  43. Palacio, F.X., J.M. Girini and M. Ordano(2017) Linking the hierarchical decision-making process of fruit choice and the phenotypic selection strength on fruit traits by birds. Journal of Plant Ecology 10(4): 713-720.
  44. Palma, E., J.A. Catford, R.T. Corlett, R.P. Duncan, A.K. Hahs, M.A. McCarthy and P.A. Vesk(2017) Functional trait changes in the floras of 11 cities across the globe in response to urbanization. Ecography 40(7): 875-886. https://doi.org/10.1111/ecog.02516
  45. Perez-Harguindeguy, N., S. Diaz, E. Gamier, S. Lavorel, H. Poorter, P. Jaureguiberry and D.E. Gurvich(2013) New handbook for stand-ardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234. https://doi.org/10.1071/BT12225
  46. Perez-Harguindeguy, N., S. Diaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry and D.E. Gurvich(2016) Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 64(8): 715-716. https://doi.org/10.1071/bt12225_co
  47. Perring, M.P., P. Manning, R.J. Hobbs, A.E. Lugo, C.E. Ramalho and R.J. Standish(2013) Novel urban ecosystems and ecosystem services. In: Novel ecosystems: Intervening in the new ecological world order. John Wiley & Sons, Ltd, pp.310-325.
  48. Planchuelo, G., I. Kowarik and M. Von der Lippe(2020) Endangered plants in novel urban ecosystems are filtered by strategy type and dispersal syndrome, not by spatial dependence on natural remnants. Frontiers in Ecology and Evolution 8: 18. https://doi.org/10.3389/fevo.2020.00018
  49. RStudio Team.(2020) RStudio: Integrated Development for R. In RStudio, PBC. http://www.rstudio.com/
  50. Salazar, P.C., R.M. Navarro-Cerrillo, G. Cruz and R. Villar(2018) Intraspecific leaf functional trait variability of eight Prosopis pallida tree populations along a climatic gradient of the dry forests of northern Peru. Journal of Arid Environments 152: 12-20. https://doi.org/10.1016/j.jaridenv.2018.01.010
  51. Snell, R.S., N.G. Beckman, E. Fricke, B.A. Loiselle, C.S. Carvalho, L.R. Jones and C. Strickland(2019) Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution and global change. AoB Plants 11(4): plz016. https://doi.org/10.1093/aobpla/plz016
  52. Sobral, M., A.R. Larrinaga and J. Guitian(2010) Do seed-dispersing birds exert selection on optimal plant trait combinations? Correlated phenotypic selection on the fruit and seed size of hawthorn (Crataegus monogyna). Evolutionary Ecology 24(6): 1277-1290. https://doi.org/10.1007/s10682-010-9380-7
  53. Teixeira, C.P. and C.O. Fernandes(2020) Novel ecosystems: A review of the concept in non-urban and urban contexts. Landscape Ecology 35(1): 23-39. https://doi.org/10.1007/s10980-019-00934-4
  54. Turner, N.C., E.D. Schulze, D. Nicolle, J. Schumacher and I. Kuhlmann(2008) Annual rainfall does not directly determine the carbon isotope ratio of leaves of Eucalyptus species. Physiologia Plantarum 132(4): 440-445. https://doi.org/10.1111/j.1399-3054.2007.01027.x
  55. Violle, C., B.J. Enquist, B.J. McGill, L. Jiang, C.H. Albert, C. Hulshof and J. Messier(2012) The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution 27(4): 244-252. https://doi.org/10.1016/j.tree.2011.11.014
  56. Wang, C., J. Liu, H. Xiao and J. Zhou(2016) Differences in leaf functional traits between Rhus typhina and native species. CLEAN-Soil, Air, Water 44(11): 1591-1597. https://doi.org/10.1002/clen.201600144
  57. Wickham, H.(2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
  58. Williams, N.S., A.K. Hahs and P.A. Vesk(2015) Urbanisation, plant traits and the composition of urban floras. Perspectives in Plant Ecology, Evolution and Systematics 17(1): 78-86. https://doi.org/10.1016/j.ppees.2014.10.002
  59. Williams, N.S., J.W. Morgan, M.J. McDonnell and M.A. Mccarthy(2005) Plant traits and local extinctions in natural grasslands along an urban-rural gradient. Journal of Ecology 93(6): 1203-1213. https://doi.org/10.1111/j.1365-2745.2005.01039.x
  60. Woo, S.(2002) A study on the superoxide dismutase(SOD) activities of Styrax japonica leaves in Yeosu Industrial Complex, air polluted area [Articles: A Study on the Superoxide Dismutase(SOD) Activities of Styrax japonica Leaves in Yeosu Industrial Complex , Air Polluted Area]. Journal of Korean Forest Society 91(2): 163-170. http://kiss.kstudy.com/thesis/thesis-view.asp?g=kissmeta&m=exp&enc=6B53E657E76D0B1B5DE07004AE6C8C10
  61. Zhu, J., H. Zhu, Y. Cao, J. Li, Q. Zhu, J. Yao and C. Xu(2020) Effect of simulated warming on leaf functional traits of urban greening plants. BMC Plant Biol. 20(1): 139. doi:10.1186/s12870-020-02359-7