Regulation of toll-like receptors expression in muscle cells by exercise-induced stress |
Park, Jeong-Woong
(Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University)
Kim, Kyung-Hwan (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University) Choi, Joong-Kook (Division of Biochemistry, College of Medicine, Chungbuk National University) Park, Tae Sub (Institute of Green-Bio Science and Technology, Seoul National University) Song, Ki-Duk (The Animal Molecular Genetics and Breeding Center, Jeonbuk National University) Cho, Byung-Wook (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University) |
1 | Pourteymour S, Eckardt K, Holen T, et al. Global mRNA sequencing of human skeletal muscle: search for novel exercise-regulated myokines. Mol Metab 2017;6:352-65. https://doi.org/10.1016/j.molmet.2017.01.007 DOI |
2 | Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262 DOI |
3 | Park JW, Choi JY, Hong SA, et al. Exercise induced upregulation of glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modifier subunit gene expression in Thoroughbred horses. Asian-Australas J Anim Sci 2017;30:728-35. https://doi.org/10.5713/ajas.16.0776 DOI |
4 | Martin SJ. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J 2016;283:2599-615. https://doi.org/10.1111/febs.13775 DOI |
5 | Chen BP, Liang G, Whelan J, Hai T. ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem 1994;269:15819-26. DOI |
6 | Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996;184:1101-9. https://doi.org/10.1084/jem.184.3.1101 DOI |
7 | Robertson TA, Maley MAL, Grounds MD, Papadimitriou JM. The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp Cell Res 1993;207:321-31. https://doi.org/10.1006/excr.1993.1199 DOI |
8 | Hai T, Hartman MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 2001;273:1-11. https://doi.org/10.1016/S0378-1119(01)00551-0 DOI |
9 | Kim H, Lee T, Park W, et al. Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse. DNA Res 2013;20:287-98. https://doi.org/10.1093/dnares/dst010 DOI |
10 | Imai Y, Kuba K, Neely GG, et al. Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008;133:235-49. https://doi.org/10.1016/j.cell.2008.02.043 DOI |
11 | Catoire M, Mensink M, Kalkhoven E, Schrauwen P, Kersten S. Identification of human exercise-induced myokines using secretome analysis. Physiol Genomics 2014;46:256-67. https://doi.org/10.1152/physiolgenomics.00174.2013 DOI |
12 | Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm 2010;2010:Article ID 672395. https://doi.org/10.1155/2010/672395 DOI |
13 | Park KD, Park J, Ko J, et al. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genomics 2012;13:473. https://doi.org/10.1186/1471-2164-13-473 DOI |
14 | Eivers SS, McGivney BA, Fonseca RG, et al. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol Genomics 2010;40:83-93. https://doi.org/10.1152/physiolgenomics.00041.2009 DOI |
15 | Park JW, Song KD, Kim NY, et al. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene. Asian-Australas J Anim Sci 2017;30:1471-7. https://doi.org/10.5713/ajas.17.0409 DOI |
16 | Lee HG, Choi JY, Park JW, et al. Effects of exercise on myokine gene expression in horse skeletal muscles. Asian-Australas J Anim Sci 2019;32:350-6. https://doi.org/10.5713/ajas.18.0375 DOI |
17 | Lee HG, Khummuang S, Youn HH, et al. The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse. Asian-Australas J Anim Sci 2019;32:1095-103. https://doi.org/10.5713/ajas.18.0757 DOI |
18 | Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem 2014;289:35237-45. https://doi.org/10.1074/jbc.R114.619304 DOI |
19 | Capomaccio S, Cappelli K, Barrey E, Felicetti M, Silvestrelli M, Verini-Supplizi A. Microarray analysis after strenuous exercise in peripheral blood mononuclear cells of endurance horses. Anim Genet 2010;41:166-75. https://doi.org/10.1111/j.1365-2052.2010.02129.x DOI |
20 | Hai TW, Liu F, Coukos WJ, Green MR. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes dev 1989;3:2083-90. https://doi.org/10.1101/gad.3.12b.2083 DOI |
21 | Cho HW, Shin S, Park JW, et al. Molecular characterization and expression analysis of the peroxisome proliferator activated receptor delta (PPARδ) gene before and after exercise in horse. Asian-Australas J Anim Sci 2015;28:697-702. https://doi.org/10.5713/ajas.14.0575 DOI |
22 | Hindi SM, Kumar A. Toll-like receptor signalling in regenerative myogenesis: friend and foe. J Pathol 2016;239:125-8. https://doi.org/10.1002/path.4714 DOI |
23 | Kim DH, Lee HG, Nipin Sp, et al. Validation of exercise-response genes in skeletal muscle cells of Thoroughbred racing horses. Anim Biosci 2021;34:134-142. https://doi.org/10.5713/ajas.18.0749 DOI |
24 | Cristi MC, Sanchez CP, Veneroso C, Cuevas MJ, Gonzalez-Gallego J. Effect of an acute exercise bout on toll-like receptor 4 and inflammatory mechanisms in rat heart. Rev Med Chile 2012;140:1282-8. https://doi.org/10.4067/s0034-98872012001000007 DOI |
25 | Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J Pathol 2008;214:161-78. https://doi.org/10.1002/path.2284 DOI |
26 | Kerst B, Mennerich D, Schuelke M, et al. Heterozygous myogenic factor 6 mutation associated with myopathy and severe course of Becker muscular dystrophy. Neuromuscul Disord 2000;10:572-7. https://doi.org/10.1016/S0960-8966(00)00150-4 DOI |
27 | Janeway JCA, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359 DOI |
28 | Shtil AA, Mandlekar S, Yu R, et al. Differential regulation of mitogen-activated protein kinases by microtubule-binding agents in human breast cancer cells. Oncogene 1999;18:377-84. https://doi.org/10.1038/sj.onc.1202305 DOI |
29 | Kim SY, Choi YJ, Joung SM, Lee BH, Jung YS, Lee JY. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor. Immunology 2010;129:516-24. https://doi.org/10.1111/j.1365-2567.2009.03203.x DOI |
30 | Miner JH, Wold B. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci USA 1990;87:1089-93. https://doi.org/10.1073/pnas.87.3.1089 DOI |
31 | Gilchrist M, Thorsson V, Li B, et al. Systems biology approaches identify ATF3 as a negative regulator of toll-like receptor 4. Nature 2006;441:173-8. https://doi.org/10.1038/nature04768 DOI |
32 | Zou J, An H, Xu H, Liu S, Cao X. Heat shock up-regulates expression of toll-like receptor-2 and toll-like receptor-4 in human monocytes via p38 kinase signal pathway. Immunology 2005;114:522-30. https://doi.org/10.1111/j.1365-2567.2004.02112.x DOI |
33 | Ju XH, Xu HJ, Yong YH, An LL, Jiao PR, Liao M. Heat stress upregulation of Toll-like receptors 2/4 and acute inflammatory cytokines in peripheral blood mononuclear cell (PBMC) of Bama miniature pigs: an in vivo and in vitro study. Animal 2014;8:1462-8. https://doi.org/10.1017/S1751731114001268 DOI |
34 | Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003;21:335-76. https://doi.org/10.1146/annurev.immunol.21.120601.141126 DOI |
35 | Fernandez-Verdejo R, Vanwynsberghe AM, Essaghir A, et al. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J 2017;31:840-51. https://doi.org/10.1096/fj.201600 987R DOI |
36 | Sp N, Kang DY, Kim DH, et al. Methylsulfonylmethane inhibits cortisol-induced stress through p53-mediated SDHA/HPRT1 expression in racehorse skeletal muscle cells: a primary step against exercise stress. Exp Ther Med 2020;19:214-22. https://doi.org/10.3892/etm.2019.8196 DOI |
37 | Hsu JC, Laz T, Mohn KL, Taub R. Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci USA 1991;88:3511-5. https://doi.org/10.1073/pnas.88.9.3511 DOI |
38 | Hai T, Wolfgang CD, Marsee DK, et al. ATF3 and stress responses. Gene Expr 1999;7:321-35. |
39 | Zimmermann J, Erdmann D, Lalande I, Grossenbacher R, Noorani M, Furst P. Proteasome inhibitor induced gene expression profiles reveal overexpression of transcriptional regulators ATF3, GADD153 and MAD1. Oncogene 2000;19:2913-20. https://doi.org/10.1038/sj.onc.1203606 DOI |
40 | Iyer VR, Eisen MB, Ross DT, et al. The transcriptional program in the response of human fibroblasts to serum. Science 1999;283:83-7. https://doi.org/10.1126/science.283.5398.83 DOI |
41 | Loetscher M, Gerber B, Loetscher P, et al. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 1996;184:963-9. https://doi.org/10.1084/jem.184.3.963 DOI |
42 | Weber M, Uguccioni M, Ochensberger B, Baggiolini M, Clark-Lewis I, Dahinden CA. Monocyte chemotactic protein MCP-2 activates human basophil and eosinophil leukocytes similar to MCP-3. J Immunol 1995;154:4166-72. |
43 | Pimkhaokham A, Shimada Y, Fukuda Y, et al. Nonrandom chromosomal imbalances in esophageal squamous cell carcinoma cell lines: possible involvement of the ATF3 and CENPF genes in the 1q32 amplicon. Jpn J Cancer Res 2000;91:1126-3. https://doi.org/10.1111/j.1349-7006.2000.tb00895.x DOI |