• Title/Summary/Keyword: Bio Chip

Search Result 220, Processing Time 0.03 seconds

Solubilization of Pyrimethamine, Antibacterial Drug, by Low-Molecular-Weight Succinoglycan Dimers Isolated from Shinorhizobium meliloti

  • Kim, Hwan-Hee;Kim, Kyoung-Tea;Choi, Jae-Min;Tahir, Muhammad Nazir;Cho, Eun-Ae;Choi, Young-Jin;Lee, Im-Soon;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2731-2736
    • /
    • 2012
  • The use of pyrimethamine as antibacterial drug is limited by the poor solubility. To enhance its solubility, we prepared complexes of pyrimethamine with low-molecular-weight succinoglycan isolated from Sinorhizobium meliloti. Low-molecular-weight succinoglycans are monomers, dimers, and trimers of the succinoglycan repeating unit. The monomers and dimers were separated into their three species (M1, M2, and M3) and four fractions (D1 to D4) using chromatographic techniques, which were shown to be nontoxic. The solubility of pyrimethamine was markedly increased up to 42 fold by succinoglycan D3, where the level of its solubility enhancement was even 8-20 fold higher comparing with cyclodextrin or its derivatives. The complex formation of succinoglycan D3 with pyrimethamine was confirmed by $^1H$ nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and molecular modeling studies. Herein, we suggest that the low-molecular-weight succinoglycans may be utilized as highly effective solubilizers of pyrimethamine for pharmaceutical purposes.

Liver cancer Prediction System using Biochip (바이오칩을 이용한 간암진단 예측 시스템)

  • Lee, Hyoung-Keun;Kim, Choong-Won;Lee, Joon;Kim, Sung-Chun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.967-970
    • /
    • 2008
  • The liver cancer in our country cancerous occurrence frequency to be the gastric cancer in the common cancer, to initially at second unique condition or symptom after the case which is slowly advanced without gets condition many the case which will be diagnosed in the liver cancer, most there was not a reasonable treatment method especially and if what kind of its treated and convalescence of the patient non quantity one, the case which will be discovered in early rising the treatment record was considered seriously about under the early detection. The system which it sees with the system for the early detection of the liver cancer reacts the blood of the control group other than the patient who is confirmed as the liver cancer and the liver cancer to the bio chip and bio chip Profiles mechanical studying leads and it is a system which it classifies. 1149 each other it reacted blood samples of the control group other than the liver cancer patient who is composed of the total 50 samples and the liver cancer which is composed of 100 samples to the bio chip which is composed with different oligo from the present paper and it was a data which it makes acquire worker the neural network it led and it analyzes the classification efficiency of the result $92{\sim}96%$ which it was visible.

  • PDF

Electrical and Fluidic Characterization of Microelectrofluidic Bench Fabricated Using UV-curable Polymer (UV경화성 폴리머를 이용한 미소유체 통합접속 벤치 개발 및 전기/유체적 특성평가)

  • Youn, Se-Chan;Jin, Young-Hyun;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.475-479
    • /
    • 2012
  • We present a novel polymer fabrication process involving direct UV patterning of a hyperbranched polymer, AEO3000. Compared to PDMS, which is the most widely used polymer in bioMEMS devices, the present polymer has advantages with regard to electrode integration and fast fabrication. We designed a four-chip microelectrofluidic bench having three electrical pads and two fluidic I/O ports. We integrated a microfluidic mixer and a cell separator on the bench to characterize the interconnection performance and sample manipulation. Electrical and fluidic characterization of the microfluidic bench was performed. The measured electrical contact resistance was $0.75{\pm}0.44{\Omega}$, which is small enough for electrical applications, and the pressure drop was 8.3 kPa, which was 39.3% of the value in the tubing method. By performing yeast mixing and a separation test in the integrated module on the bench, we successfully showed that the interconnected chips could be used for bio-sample manipulation.

Development of the DNA Sequencing Chip with Nano Pillar Array using Injection Molding (Nano Pillar Array 사출성형을 이용한 DNA 분리 칩 개발)

  • Kim S.K.;Choi D.S.;Yoo Y.E.;Je T.J.;Kim T.H.;Whang K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1206-1209
    • /
    • 2005
  • In recent, injection molding process for features in sub-micron scale is under active development as patterning nano-scale features, which can provide the master or stamp for molding, and becomes available around the world. Injection molding has been one of the most efficient processes for mass production of the plastic product, and this process is already applied to nano-technology products successfully such as optical storage media like DVD or BD which is a large area plastic thin substrate with nano-scale features on its surface. Bio chip for like DNA sequencing may be another application of this plastic substrate. The DNA can be sequenced using order of 100 nm pore structure when making the DNA flow through the pore structure. Agarose gel and silicon based chip have been used to sequence the DNA, but injection molded plastic chip may have benefit in terms of cost. This plastic DNA sequencing chip has plenty of pillars in order of 100 nm in diameter on the substrate. When the usual features in case of DVD or BD have very low aspect ratio, even less than 0.5, but the DNA chip will have relatively high aspect ratio of about 2. It is not easy to injection mold the large area thin substrate with sub-micron features on its surface due to the characteristics of the molding process and it becomes much more difficult when the aspect ratio of the features becomes high. We investigated the effect of the molding parameters for injection molding with high aspect ratio nano-scale features and injection molded some plastic DNA sequencing chips. We also fabricated PR masters and Ni stamps of the DNA chip to be used for molding

  • PDF

BioMEMS-EARLY DISEASE DETECTION (BioMEMS 기반의 조기 질병 진단 기술에 관한 연구)

  • Singh, Kanika;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2781-2784
    • /
    • 2007
  • Early detection of a disease is important to tackle treatment issues in a better manner. Several diagnostic techniques are in use, these days; for such purpose and tremendous research is going on to develop newer and newer methods. However, more work is required to be done to develop cheap and reliable early detection techniques. Micro-fluidic chips are also playing key role to deliver new devices for better health care. The present study focuses on a review of recent developments in the interrogation of different techniques and present state-of-the-art of microfluidic sensor for better, quick, easy, rapid, early, inexpensive and portable POCT (Point of Care testing device) device for a particular study, in this case, bone disease called osteoporosis. Some simulations of the microchip are also made to enable feasibility of the development of a blood-chip-based system. The proposed device will assist in early detection of diseases in an effective and successful manner.

  • PDF

Micro-PIV Analysis of Electro-osmotic Flow inside Microchannels (마이크로 채널 내부 전기삼투 유동에 대한 PIV유동 해석)

  • Kim Yang-Min;Lee Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.47-51
    • /
    • 2003
  • Microfluidic chips such as lab-on-a-chip (LOC) include micro-channels for sample delivery, mixing, reaction, and separation. Pressure driven flow or electro-osmotic flow (EOF) has been usually employed to deliver bio-samples. Having some advantages of easy control, the flow characteristics of EOF in microchannels should be fully understood to effectively control the electro-osmotic pump for bio-sam-pie delivery. In this study, a micro PIV system with an epifluorescence inverted microscope and a cooled CCD was used to measure velocity fields of EOF in a glass microchannel and a PDMS microchannel. The EOF velocity fields were changed with respect to electric charge of seeding particles and microchannel materials used. The EOF has nearly uniform velocity distribution inside the microchannel when pressure gradient effect is negligible. The mean streamwise velocity is nearly proportional to the applied electric field. Glass microchannels give better repeatability in PIV results, compared with PDMS microchannels which are easy to fabricate and more suitable for PIV experiments.

  • PDF

Microfluidic cell sizing using hydrophoretic size-based separation (유체영동 기반의 입자분리현상을 이용한 세포 크기 측정방법)

  • Choi, Sung-Young;Park, Je-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.245-249
    • /
    • 2008
  • This paper presents a microfluidic cell sizing method using hydrophoretic size-based separation. By exploiting slanted obstacles in a microchannel, we can generate a lateral pressure gradient so that microparticles can be deflected and arranged along lateral flows induced by the gradient. Using such movement of particles, we discriminated 8 to 15 μm-sized beads. We measured the size of U937 cells by comparing the hydrophoretic response of the cells to those of the size-standard beads whose diameters are known. Due to its simple design and fabrication, the sizing method can be easily integrated with other microfluidic components such as cell culture chambers conducting on-chip sizing and sorting.

Structural Analysis and Design of Robust Motion Controllers for High-Accuracy Positioning Systems

  • Kim, Bong-Keun;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.467-467
    • /
    • 2000
  • In this paper, a structural design method of robust motion controllers for high-accuracy positioning systems, which makes it possible to predict the performance of the whole closed-loop system, is proposed. First, a stabilizing control input is designed based on robust internal-loop compensate.(RTC) for the system in the presence of uncertainty and disturbance. Next, using the structural characteristics of the RIC, disturbance attenuation properties and the performance of the closed-loop system determined by the variation of controller gains are analyzed. Through this analysis, in some specific applications, it is shown that if the control gain of RIC is increased by N times, the magnitude of error is reduced to its 1/N. Finally, the proposed method is verified through experiments using a high-accuracy positioning system used in the semiconductor chip mounting devices.

  • PDF

MEMS for Heterogeneous Integration of Devices and Functionality

  • Fujita, Hiroyuki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Future MEMS systems will be composed of larger varieties of devices with very different functionality such as electronics, mechanics, optics and bio-chemistry. Integration technology of heterogeneous devices must be developed. This article first deals with the current development trend of new fabrication technologies; those include self-assembling of parts over a large area, wafer-scale encapsulation by wafer-bonding, nano imprinting, and roll-to-roll printing. In the latter half of the article, the concept towards the heterogeneous integration of devices and functionality into micro/nano systems is described. The key idea is to combine the conventional top-down technologies and the novel bottom-up technologies for building nano systems. A simple example is the carbon nano tube interconnection that is grown in the via-hole of a VLSI chip. In the laboratory level, the position-specific self-assembly of nano parts on a DNA template was demonstrated through hybridization of probe DNA segments attached to the parts. Also, bio molecular motors were incorporated in a micro fluidic system and utilized as a nano actuator for transporting objects in the channel.

Pumpless Cell Culture Chip with a Constant Perfusion Rate Maintained by Balanced Droplet Dispensing (액적의 균형공급에 의해 관류유량이 일정한 펌프 없는 세포배양 칩)

  • Kim, Tae-Yoon;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1127-1131
    • /
    • 2011
  • We report on a pumpless cell culture chip in which a constant medium perfusion rate is maintained by balanced droplet dispensing. Previous chips had a decreasing perfusion rate due to the decreasing hydraulic-head difference ${\Delta}h$ between the inlet and drain. However, the present chip maintains a constant medium perfusion rate due to the constant ${\Delta}h$ between the inlet and drain maintained by balanced droplet dispensing. The perfusion rate Q was measured to be 0.1-$0.3{\mu}l$/min with a maximum deviation and error of 9.96% and 6.92%, respectively. In the perfusion culture (Q = 0.1-$0.3{\mu}l$/min), the maximum growth-rate of H358 cells was measured to be $57.8%{\pm}21.1%$ per day, which is 1.9 times higher than that of a static culture. The perfusion culture also resulted in higher cell viability than a static culture. The present chip offers a favorable environment with a high growth-rate and viability and thus has potential for use in the integrated cell culture system.