DOI QR코드

DOI QR Code

Pumpless Cell Culture Chip with a Constant Perfusion Rate Maintained by Balanced Droplet Dispensing

액적의 균형공급에 의해 관류유량이 일정한 펌프 없는 세포배양 칩

  • Received : 2011.03.31
  • Accepted : 2011.09.07
  • Published : 2011.11.01

Abstract

We report on a pumpless cell culture chip in which a constant medium perfusion rate is maintained by balanced droplet dispensing. Previous chips had a decreasing perfusion rate due to the decreasing hydraulic-head difference ${\Delta}h$ between the inlet and drain. However, the present chip maintains a constant medium perfusion rate due to the constant ${\Delta}h$ between the inlet and drain maintained by balanced droplet dispensing. The perfusion rate Q was measured to be 0.1-$0.3{\mu}l$/min with a maximum deviation and error of 9.96% and 6.92%, respectively. In the perfusion culture (Q = 0.1-$0.3{\mu}l$/min), the maximum growth-rate of H358 cells was measured to be $57.8%{\pm}21.1%$ per day, which is 1.9 times higher than that of a static culture. The perfusion culture also resulted in higher cell viability than a static culture. The present chip offers a favorable environment with a high growth-rate and viability and thus has potential for use in the integrated cell culture system.

본 논문에서는 액적의 균형공급에 의해 관류유량이 일정하게 유지되는 펌프 없는 세포배양 칩을 제안하였다. 기존의 펌프 없는 세포배양 칩은 유체 수위차가 시간에 따라 점차 감소하여 일정한 관류유량 유지가 어려웠다. 반면, 제안된 칩은 액적의 균형공급으로 유체 수위차를 일정하게 유지하여 일정한 관류유량의 세포배양이 가능하다. 제작된 세포배양 칩의 성능분석 결과, 펌프 없이 최대 9.96%와 6.92% 의 편차 및 오차 내에서 0.1~$0.3{\mu}l$/min 의 관류유량, Q, 을 얻었다. H358 폐암 세포주 배양결과, Q=$0.2{\mu}l$/min 의 관류유량에서 최대 $57.8{\pm}21.1%$/일의 증식률을 보여, Q=$0{\mu}l$/min 의 정치배양보다 1.9 배 높은 값을 얻었으며 활성도 또한 정치배양보다 관류배양이 더 높은 값을 보였다. 제안된 펌프 없는 세포배양칩은 높은 증식률과 활성도의 좋은 배양환경을 제공하여 세포기반 바이오 분석에 응용 가능하다.

Keywords

References

  1. Kim, L., Toh, Y.-C., Voldman, J. and Yu, H, 2007, "A Practical Guide to Microfluidic Perfusion Culture of Adherent Mammalian Cells," Lab Chip, Vol. 7, pp. 681-694. https://doi.org/10.1039/b704602b
  2. Korin, N., Bransky, A., Dinnar, U. and Levenberg, S., 2009, "Periodic "Flow-Stop" Perfusion Microchannel Bioreactors for Mammalian and Human Embryonic Stem Cell Long-Term Culture," Biomed. Microdevices, Vol.11, pp. 87-94. https://doi.org/10.1007/s10544-008-9212-5
  3. Lii, J., Hsu, W.-J., Parsa, H., Das, A., Rouse, R. and Sia, S.K., 2008, "Real-Time Microfluidic System for Studying Mammalian Cells in 3D Microenvironments," Anal. Chem., Vol. 80, pp. 3640-3647. https://doi.org/10.1021/ac8000034
  4. Kim, L., Vahey, M. D., Lee, H.-Y. and Voldman, J., 2006, "Microfluidic Arrays for Logarithmically Perfused Embryonic Stem Cell Culture," Lab Chip, Vol. 6, pp. 394-406. https://doi.org/10.1039/b511718f
  5. Lee, P. J., Ghorashian, N., Gaige, T. A. and Hung, P. J., 2007, "Microfluidic System for Automated Cell- Based Assays," JALA Charlottesv Va., Vol. 12, pp. 363-367.
  6. Tourovskaia, A., F.-Masot, X. and Folch, A., 2005, "Differentiation-on-a-Chip: A Microfluidic Platform for Long-Term Cell Culture Studies," Lab Chip, Vol. 5, pp. 14-19. https://doi.org/10.1039/b405719h
  7. White, F. M., 1991, Viscous Fluid Flow, McGraw- Hill, New York, pp. 114.