Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.8.2731

Solubilization of Pyrimethamine, Antibacterial Drug, by Low-Molecular-Weight Succinoglycan Dimers Isolated from Shinorhizobium meliloti  

Kim, Hwan-Hee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Center for Biotechnology Research in UBITA, Konkuk University)
Kim, Kyoung-Tea (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Center for Biotechnology Research in UBITA, Konkuk University)
Choi, Jae-Min (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Center for Biotechnology Research in UBITA, Konkuk University)
Tahir, Muhammad Nazir (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Center for Biotechnology Research in UBITA, Konkuk University)
Cho, Eun-Ae (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Center for Biotechnology Research in UBITA, Konkuk University)
Choi, Young-Jin (BioChip Research Center, Hoseo University)
Lee, Im-Soon (Department of Biological Sciences & Center for Biotechnology Research in UBITA, Konkuk University)
Jung, Seun-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Center for Biotechnology Research in UBITA, Konkuk University)
Publication Information
Abstract
The use of pyrimethamine as antibacterial drug is limited by the poor solubility. To enhance its solubility, we prepared complexes of pyrimethamine with low-molecular-weight succinoglycan isolated from Sinorhizobium meliloti. Low-molecular-weight succinoglycans are monomers, dimers, and trimers of the succinoglycan repeating unit. The monomers and dimers were separated into their three species (M1, M2, and M3) and four fractions (D1 to D4) using chromatographic techniques, which were shown to be nontoxic. The solubility of pyrimethamine was markedly increased up to 42 fold by succinoglycan D3, where the level of its solubility enhancement was even 8-20 fold higher comparing with cyclodextrin or its derivatives. The complex formation of succinoglycan D3 with pyrimethamine was confirmed by $^1H$ nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and molecular modeling studies. Herein, we suggest that the low-molecular-weight succinoglycans may be utilized as highly effective solubilizers of pyrimethamine for pharmaceutical purposes.
Keywords
Pyrimethamine; Solubilization; Complexation; Succinoglycan;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Hirose, K. J. Incl. Phenom. Macrocycl. Chem. 2001, 39, 193.   DOI
2 Fielding, L. Tetrahedron 2000, 56, 6151.   DOI
3 Park, H.; Choi, Y.; Kang, S.; Lee, S.; Kwon, C.; Jung, S. Carbohydr. Polym. 2006, 64, 85.   DOI
4 Kang, S.; Lee, S.; Kyung, S.; Jung, S. Bull. Korean. Chem. Soc. 2006, 27, 921.   DOI
5 Burova, T. V.; Golubeva, I. A.; Grinberg, N. V.; Mashkevich, A. Y.; Grinberg, V. Y.; Usov, A. I.; Navarini, L.; Cesro, A. Biopolym. 1996, 39, 517.
6 Korb, O.; Sttzle, T.; Exner, T. E. J. Chem. Inf. Model. 2009, 49, 84.   DOI
7 de Araujo M. V.; Macedo, O. F.; Nascimento, C. C.; Conegero, L. S.; Barreto, L. S.; Almeida, L. E.; da Costa, N. B., Jr.; Gimenez, I. F. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2009, 72, 165.   DOI
8 Onyeji, C. O.; Omoruyi, S. I.; Oladimeji, F. A.; Soyinka, J. O. Afr. J. Biotechnol. 2009, 8, 1651.
9 Gonzlez, J. E.; Semino, C. E.; Wang, L. X.; Castellano-torres, L. E.; Walker, G. C. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 13477.   DOI
10 Wang, L. X.; Wang, Y.; Pellock, B.; Walker, G. C. J. Bacteriol. 1999, 181, 6788.
11 Cho, E.; Choi, J. M.; Kim, H.; Lee, I.-S.; Jung, S. Bull. Korean Chem. Soc. 2011, 32, 4071.   DOI
12 Åmen, P.; McNeil, M.; Franzn, L.-E.; Darvill, A. G.; Albersheim, P. Carbohydr. Res. 1981, 95, 263.   DOI
13 Kwon, C.; Lee, S.; Jung, S. Carbohydr. Res. 2011, 346, 2308.   DOI
14 Kwon, C.; Paik, S. R.; Jung, S. Electrophoresis 2008, 29, 4284.   DOI
15 Choi, J. M.; Kim, H.; Cho, E.; Choi, Y.; Lee, I.-S.; Jung, S. Carbohydr. Polym. 2012, 89, 564.   DOI
16 Higuchi, T.; Connors, K. A. Adv. Anal. Chem. Instr. 1965, 4, 117.
17 Loftsson, T.; Magnsdttir, A.; Msson, M.; Siqurjnsdttir, J. F. J. Pharm. Sci. 2002, 91, 2307.   DOI
18 Valle, E. M. M. D. Process Biochem. 2004, 39, 1033.   DOI
19 Connors, K. A. Chem. Rev. 1997, 97, 1325.   DOI
20 Brewster, M. E.; Loftsson, T. Adv. Drug Deliv. Rev. 2007, 59, 645.   DOI
21 Chavan, A. B.; Mali, K. K.; Dias, R. J.; Kate, L. D. Pharmacia. Lettre 2011, 3, 281.
22 Gil, V. M. S.; Oliveira, N. C. J. Chem. Educ. 1990, 67, 473.   DOI
23 Bosch-Driessen, L. H.; Verbraak, F. D.; Suttorp-Schulten, M. S.; van Ruyven, R. L.; Klok, A. M.; Hoyng, C. B; Rothova A. Am. J. Ophthalmol. 2002, 134, 34.   DOI
24 Anderson, A. C. Drug Discov. Today 2005, 10, 121.   DOI
25 Miller, L. A.; Carrier, R. L.; Ahmed, I. J. Pharm. Sci. 2007, 96, 1691.   DOI
26 Watkins, W. M.; Mberu, E. K.; Winstanley, P. A.; Plowe, C. V. Parasitol. Today 1997, 13, 459.   DOI
27 de Arajo, M. V.; Vieira, E. K.; Lzaro, G. S.; de Souza Conegero, L.; Ferreira, O. P.; Almeida, L. S.; Barreto, L. S.; da Costa, N. B., Jr.; Gimenez , I. F. Bioorg. Med. Chem. 2007, 15, 5752.   DOI
28 Brewster, M. E.; Loftsson, T. Pharmazie 2002, 57, 94.
29 Jansook, P.; Kurkov, S. V.; Loftsson, T. J. Pharm. Sci. 2010, 99, 719.
30 Charman, S. A.; Perry, C. S.; Chiu, F. C.; Mclntosh, K. A.; Rrankerd, R. J.; Charman, W. N. J. Pharm. Sci. 2006. 95, 256.   DOI