DOI QR코드

DOI QR Code

MEMS for Heterogeneous Integration of Devices and Functionality

  • Fujita, Hiroyuki (Center for International Research on MicroMechatoronics (CIRMM), Institute of Industrial Science, The University of Tokyo)
  • Published : 2007.09.30

Abstract

Future MEMS systems will be composed of larger varieties of devices with very different functionality such as electronics, mechanics, optics and bio-chemistry. Integration technology of heterogeneous devices must be developed. This article first deals with the current development trend of new fabrication technologies; those include self-assembling of parts over a large area, wafer-scale encapsulation by wafer-bonding, nano imprinting, and roll-to-roll printing. In the latter half of the article, the concept towards the heterogeneous integration of devices and functionality into micro/nano systems is described. The key idea is to combine the conventional top-down technologies and the novel bottom-up technologies for building nano systems. A simple example is the carbon nano tube interconnection that is grown in the via-hole of a VLSI chip. In the laboratory level, the position-specific self-assembly of nano parts on a DNA template was demonstrated through hybridization of probe DNA segments attached to the parts. Also, bio molecular motors were incorporated in a micro fluidic system and utilized as a nano actuator for transporting objects in the channel.

Keywords

References

  1. Long-Sheng FAN, Yu-Chong TAI, Richard S. Muller, 'Integrated Movable Micromechanical Structures for Sensors and Actuators,' IEEE Transactions on Electron Devices, Vol. 35, pp. 724-730, 1988 https://doi.org/10.1109/16.2523
  2. Mehran Mehregany, Kaighan J. Gabriel, William S. N. Trimmer, 'Integrated Fabrication of Polysilicon Mechanisms,' IEEE Transactions on Electron Devices, Vol. 35, pp. 719-723, 1988 https://doi.org/10.1109/16.2522
  3. Hiroyuki Fujita, 'Microactuators and Micromachines,' Proc. IEEE, Vol. 86, pp. 1721-1732, 1988
  4. K.E. Petersen, 'Silicon as a mechanical material,' Proc. IEEE, Vol. 70, pp. 420, 1982 https://doi.org/10.1109/PROC.1982.12331
  5. K.J. Gabriel, 'Engineering microscopic machines,' Sci. Amer., Vol. 260, No. 9, pp. 118-121, 1995
  6. Xiaorong Xiong, Yael Hanein, Jiandong Fang, Yanbing Wang, Weihua Wang, Daniel T. Schwartz, Karl F. Böhringer, 'Controlled Multi-Batch Self- Assembly of Micro Devices,' ASME/IEEE Journal of Microelectromechanical Systems Vol. 12, pp. 117-127, 2003 https://doi.org/10.1109/JMEMS.2003.809964
  7. R. N. Candler W.T. Park, H.M. Li, G. Yama, A. Partridge, M. Luts, T. W. Kenny, 'Single Wafer Encapsulation of MEMS Devices,' IEEE Trans. on Advanced Packaging Vol. 26, pp. 227, 2003 https://doi.org/10.1109/TADVP.2003.818062
  8. Gerwin H. Gelinck, et al.: Flexible active-matrix displays and shift registers based on solution processed organic transistors, Nature Materials Vol. 3, pp. 106-110, 2004 https://doi.org/10.1038/nmat1061
  9. Makela T, Jussila S, Kosonen H, Backlund TG, Sandberg HGO, Stubb H: Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors, Synthetic Metals Vol. 153 No. 1-3: pp. 285-288 Part 2 Sp. Iss.SI, Sep (2005) https://doi.org/10.1016/j.synthmet.2005.07.140
  10. Tsuyoshi Sekitani, Makoto Takamiya, Yoshiaki Noguchi, Shintaro Nakano, Yusaku Kato, Takayasu Sakurai & Takao Someya: A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches, Nature Materials Published online: 29 April 2007 | doi: 10.1038/nmat1903
  11. Yoshiaki Noguchi, Tsuyoshi Sekitani, and Takao Someya, 'Organic-transistor-based flexible pressure sensors using ink-jet-printed electrodes and gate dielectric layers,' Appl. Phys. Lett. 89, 253507 (2006) https://doi.org/10.1063/1.2416001
  12. A. M. Fennimore, T. D. Yuzvinsky, Wei-Qiang Han, M. S. Fuhrer, J. Cumings & A. Zettl 'Rotational actuators based on carbon nanotubes,' Nature 424, 408 (2003) https://doi.org/10.1038/nature01823
  13. http://pr.fujitsu.com/jp/news/2006/06/6.html (in Japanese)
  14. Takuya Kobayashi and Masao Washizu, 'Stretchand- positioning of single stranded DNA as a template for molecular construction,' IEEE Internt'l Conf. on Micro Electro Mechanical Systems (MEMS 2005), Jan. 30 – Feb. 3, 2005, Miami Beach, FL, USA, p.662-665 (2005)
  15. R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, R. Ohkura, M. Edamatsu, K. Sutoh, H. Fujita, 'Hybrid nanotransport system by biomolecular linear motors,' IEEE/ASME J. Microelectromech. Syst. Vol. 13, pp. 612-619, 2004 https://doi.org/10.1109/JMEMS.2004.832193
  16. R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, K. Sutoh, H. Fujita, 'Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device,' Nano Lett. Vol. 4, pp. 2265-2270, 2004 https://doi.org/10.1021/nl048851i
  17. Ryuji Yokokawa, Yumi Yoshida, Shoji Takeuchi, Takahide Kon, Hiroyuki Fujita, 'Unidirectional transport of a bead on a single microtubule immobilized in a submicrometre channel,' Nanotechnology, Vol. 17, pp. 289-294, 2006 https://doi.org/10.1088/0957-4484/17/1/049
  18. M.C. Tarhan, R. Yokokawa, F. Morin, S. Takeuchi, T. Kon, H. Fujita; IEEE Internt'l Conf. on Micro Electro Mechanical Systems (MEMS 2005), Jan. 30 - Feb. 3, 2005, Miami Beach, FL, USA, p. 526-529, 2005

Cited by

  1. Mechanical characterizations of topology-insensitive rivet bonding using the sidewall bond principle vol.7, pp.2, 2011, https://doi.org/10.1002/tee.20701