• Title/Summary/Keyword: Binding energies

Search Result 155, Processing Time 0.023 seconds

Inhibitory Activity of Aralia elata Leaves on Protein Tyrosine Phosphatase 1B and α-Glucosidase (참두릅 잎의 Protein Tyrosine Phosphatase 1B와 α-Glucosidase 저해 활성)

  • Cho, Yoon Sook;Seong, Su Hui;Bhakta, Himanshu Kumar;Jung, Hee Jin;Moon, Kyung Ho;Choi, Jae Sue
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • Anti-diabetic potential of the leaves of A. elata through the inhibitory activity on PTP1B and ${\alpha}$-glucosidase has not been reported. In this study, the EtOAc fraction of methanolic extract from the leaves of A. elata showed potent inhibitory activity against the PTP1B and ${\alpha}$-glucosidase with $IC_{50}$ value of $96.29{\pm}0.3$ and $264.71{\pm}14.87{\mu}g/mL$, respectively. Three known triterpenoids, oleanolic acid, oleanolic acid-28-O-${\beta}$-D-glucopyranoside and oleanolic acid-3-O-${\beta}$-D-glucopyranoside were isolated from the most active EtOAc fraction. We determined the chemical structure of these triterpenoids through comparisons of published nuclear magnetic resonance (NMR) spectroscopic data. Furthermore, we screened these triterpenoids for their ability to inhibit PTP1B and ${\alpha}$-glucosidase over a range of concentrations ($12.5-50{\mu}M$). All three terpenoids significantly inhibited PTP1B in a concentration dependent manner and oleanolic acid effectively inhibited ${\alpha}$-glucosidase. In addition, these compounds revealed potent inhibitory activity with negative binding energies toward PTP1B, showing high affinity and tight binding capacity in the molecular docking studies. Therefore, the results of the present study clearly demonstrate that A. elata leaves and its triterpenoid constituents might be beneficial in the prevention or treatment of diabetic disease.

Theoretical Study on the High Energetic Properties of HMX/LLM-116 Cocrystals (HMX/LLM-116 공결정의 고에너지 특성에 관한 이론 연구)

  • Kim, Sung-Hyun;Ko, Yoo-Mi;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The theoretical investigation has been performed to predict detonation velocity, detonation pressure, and thermodynamic stability of HMX/LLM-116 cocrystal. All possible geometries of HMX, LLM-116, and cocrystal have been optimized at the B3LYP/cc-pVTZ level of theory. The binding energy for the trigger bond and cluster has been calculated to predict the thermodynamic stability. The MP2 binding energies were obtained using single point energy calculation at the B3LYP optimized geometries, and the density has been calculated from monte carlo integration. The detonation velocity and detonation pressure have been calculated using Kamlet-Jacobs equation, while enthalpy has been predicted at the CBS-Q level of theory.

Effect of Working Pressure and Substrate Bias on Phase Formation and Microstructure of Cr-Al-N Coatings

  • Choi, Seon-A;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.511-517
    • /
    • 2017
  • With different working pressures and substrate biases, Cr-Al-N coatings were deposited by hybrid physical vapor deposition (PVD) method, consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP) processes. Cr and Al targets were used for the arc ion plating and the sputtering process, respectively. Phase analysis, and composition, binding energy, and microstructural analyses were performed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM), respectively. Surface droplet size of Cr-Al-N coatings was found to decrease with increasing substrate bias. A decrease of the deposition rate of Cr-Al-N films was expected due to the increase of substrate bias. The coatings were grown with textured CrN phase and (111), (200), and (220) planes. X-ray diffraction data show that all Cr-Al-N coatings shifted to lower diffraction angles due to the addition of Al. The XPS results were used to determine the $Cr_2N$, CrN, and (Cr,Al)N binding energies. The compositions of the Cr-Al-N films were measured by XPS to be Cr 23.2~36.9 at%, Al 30.1~40.3 at%, and N 31.3~38.6 at%.

Network pharmacology-based prediction of efficacy and mechanism of Myrrha acting on Allergic Rhinitis (네트워크 약리학을 활용한 알레르기 비염에서의 몰약의 치료 효능 및 기전 예측)

  • Yebin Lim;Bitna Kweon;Dong-Uk Kim;Gi-Sang Bae
    • The Journal of Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.114-125
    • /
    • 2024
  • Objectives: Network pharmacology is an analysis method that explores drug-centered efficacy and mechanism by constructing a compound-target-disease network based on system biology, and is attracting attention as a methodology for studying herbal medicine that has the characteristics for multi-compound therapeutics. Thus, we investigated the potential functions and pathways of Myrrha on Allergic Rhinitis (AR) via network pharmacology analysis and molecular docking. Methods: Using public databases and PubChem database, compounds of Myrrha and their target genes were collected. The putative target genes of Myrrha and known target genes of AR were compared and found the correlation. Then, the network was constructed using STRING database, and functional enrichment analysis was conducted based on the Gene Ontology (GO) Biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways. Binding-Docking stimulation was performed using CB-Dock. Results: The result showed that total 3 compounds and 55 related genes were gathered from Myrrha. 33 genes were interacted with AR gene set, suggesting that the effects of Myrrha are closely related to AR. Target genes of Myrrha are considerably associated with various pathways including 'Fc epsilon RI signaling pathway' and 'JAK-STAT signaling pathway'. As a result of blinding docking, AKT1, which is involved in both mechanisms, had high binding energies for abietic acid and dehydroabietic acid, which are components of Myrrha. Conclusion: Through a network pharmacological method, Myrrha was predicted to have high relevance with AR by regulating AKT1. This study could be used as a basis for studying therapeutic effects of Myrrha on AR.

Electrochemical Characterization of Multilayered CdTe/PSS Films Prepared by Electrostatic Self-assembly Method

  • Rabbani, Mohammad Mahbub;Yeum, Jeong Hyun;Kim, Jungsoo;Nam, Dae-Geun;Oh, Weontae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.257-261
    • /
    • 2014
  • Multilayered CdTe/PSS films were prepared by the electrostatic self-assembly method in an aqueous medium. Positively-charged cadmium telluride (CdTe) nanoparticles and anionic polyelectrolyte, poly (sodium 4-styrene sulfonate) (PSS) were assembled alternately in order to build up a multilayered film structure. A linear proportion of absorbance to the number of bilayers suggests that an equal amount of CdTe was adsorbed after each dipping cycle, which resulted in the buildup of a homogenous film. The binding energies of elements (Cd and Te) in multilayered CdTe/PSS film shifted from those of the CdTe nanoparticles in the pure state. This result indicates that the interfacial electron densities were redistributed by the strong electrostatic interaction between the oppositely-charged CdTe and PSS. Electrochemical properties of the multilayered CdTe/PSS films were studied in detail by cyclic voltammetry (CV).

Interfacial Natures and Controlling Morphology of Co Oxide Nanocrystal Structures by Adding Spectator Ni Ions

  • Gwag, Jin-Seog;Sohn, Young-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.505-510
    • /
    • 2012
  • Cobalt oxide nanostructure materials have been prepared by adding several concentrations of spectator Ni ions in solution, and analyzed by electron microscopy, X-day diffraction, calorimetry/thermogravimetric analysis, UV-vis absorption, Raman, and X-ray photoelectron spectroscopy. The electron microscopy results show that the morphology of the nanostructures is dramatically altered by changing the concentration of spectator ions. The bulk XRD patterns of $350^{\circ}C$-annealed samples indicate that the structure of the cobalt oxide is all of cubic Fd-3m $Co_3O_4$, and show that the major XRD peaks shift slightly with the concentration of Ni ions. In Raman spectroscopy, we can confirm the XRD data through a more obvious change in peak position, broadness, and intensity. For the un-sputtered samples in the XPS measurement process, the XPS peaks of Co 2p and O 1s for the samples prepared without Ni ions exhibit higher binding energies than those for the sample prepared with Ni ions. Upon $Ar^+$ ion sputtering, we found $Co_3O_4$ reduces to CoO, on the basis of XPS data. Our study could be further applied to controlling morphology and surface oxidation state.

Studies on Mechanical Interfacial Properties of Kevlar-29 Fibers Reinforced Composites (Kevlar-29 섬유강화 복합재료의 기계적 계면 특성 연구)

  • Park, Soo-Jin;Seo, Min-Kang;Ma, Tae-Jun;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.158-162
    • /
    • 2001
  • The effects of chemical treatment on Kevlar-29 fibers have been studied in a composite system. The surface characteristics of the Kevlar-29 fibers were characterized by pH, acid-base value and X-ray photoelectron spectroscopy (XPS). The mechanical interfacial properties of final composites were studied by interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). Also, the impact properties of the composites were investigated in the differentiating studies between initiation and propagation energies, and ductile index (DI) along with maximum farce and total energy. It was found that the chemical treatment with phosphoric acid ($H_3PO_4$) solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improving the mechanical interfacial strength of the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force in a composite system.

  • PDF

Thermodynamic Analyses of the Constitutive Splicing Pathway for Ovomucoid Pre-mRNA

  • Ro-Choi, Tae Suk;Choi, Yong Chun
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.657-665
    • /
    • 2009
  • The ovomucoid pre-mRNA has been folded into mini-hairpins adaptable for the RNA recognition motif (RRM) protein binding. The number of mini-hairpins were 372 for pre-mRNA and 83-86 for mature mRNA. The spatial arrangements are, in average, 16 nucleotides per mini-hairpin which includes 7 nt in the stem, 5.6 nt in the loop and 3.7 nt in the inter-hairpin spacer. The constitutive splicing system of ovomucoid-pre-mRNA is characterized by preferred order of intron removal of 5/6 > 7/4 > 2/1 > 3. The 5' splice sites (5'SS), branch point sequences (BPS) and 3' splice sites (3'SS) were identified and free energies involved have been estimated in 7 splice sites. Thermodynamic barriers for splice sites from the least (|lowest| -Kcal) were 5, 4, 7, 6, 2, 1, and 3; i.e., -18.7 Kcal, -20.2 Kcal, -21.0 Kcal, -24.0 Kcal, - 25.4 Kcal, -26.4 Kcal and -28.2 Kcal respectively. These are parallel to the kinetic data of splicing order reported in the literature. As a result, the preferred order of intron removals can be described by a consideration of free energy changes involved in the spliceosomal assembly pathway. This finding is consistent with the validity of hnRNP formation mechanisms in previous reports.

Molecular Modeling, Synthesis, and Screening of New Bacterial Quorum-sensing Antagonists

  • Kim, Cheol-Jin;Kim, Jae-Eun;Park, Hyung-Yeon;Mclean, Robert J.C.;Kim, Chan-Kyung;Jeon, Jong-Ho;Yi, Song-Se;Kim, Young-Gyu;Lee, Yoon-Sik;Yoon, Je-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1598-1606
    • /
    • 2007
  • A new series comprising 7 analogs of N-(sulfanyl ethanoyl)-L-HSL derivatives, 2 analogs of N-(fluoroalkanoyl)-$_L$-HSL derivatives, N-(fluorosulfonyl)-L-HSL, and 2,2-dimethyl butanoyl HSL were synthesized using a solid-phase organic synthesis method. Each of the 11 synthesized compounds was analyzed using NMR and mass spectroscopies, and molecular modeling studies of the 11 ligands were performed using SYBYL packages. Thereafter, a bacterial test was designed to identify their quorum-sensing inhibition activity and antifouling efficacy. Most of the synthesized compounds were found to be effective as quorum-sensing antagonists, where antagonist screening revealed that 10 among the 11 synthesized ligands were able to antagonize the quorum sensing of A. tumefaciens.

Molecular Modeling and its Experimental Verification for the Catalytic Mechanism of Candida antarctica Lipase B

  • Kwon, Cheong-Hoon;Shin, Dae-Young;Lee, Jong-Ho;Kim, Seung-Wook;Kang, Jeong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1098-1105
    • /
    • 2007
  • Quantum mechanical and molecular dynamics simulation analysis has been performed on the model system for CALB (Candida antarctica lipase B) with esters to study the reaction mechanism and conformational preference of catalytic hydrolysis and the esterification reaction. Using quantum mechanical analysis, the ping-pong bi-bi mechanism was applied and energies and 3-dimensional binding configurations of the whole reaction pathways were calculated. Further molecular dynamics simulation analysis was performed on the basis of the transition state obtained from quantum mechanical study to observe the effect of structures of the substrates. Calculation results using substrates of different chain length and chiral configurations were compared for conformational preference. The calculated results showed very small influence on chain length, whereas chiral conformation showed big differences. Calculated results from molecular modeling studies have been compared qualitatively with the experimental data using racemic mixtures of (${\pm}$)-cis-4-acetamido-cyclopent-2-ene-1-ethyl acetate as substrates.