DOI QR코드

DOI QR Code

Thermodynamic Analyses of the Constitutive Splicing Pathway for Ovomucoid Pre-mRNA

  • Ro-Choi, Tae Suk (Medical Research Center for Cancer Molecular Therapy, Dong-A University College of Medicine) ;
  • Choi, Yong Chun (Medical Research Center for Cancer Molecular Therapy, Dong-A University College of Medicine)
  • 투고 : 2009.01.28
  • 심사 : 2009.04.22
  • 발행 : 2009.06.30

초록

The ovomucoid pre-mRNA has been folded into mini-hairpins adaptable for the RNA recognition motif (RRM) protein binding. The number of mini-hairpins were 372 for pre-mRNA and 83-86 for mature mRNA. The spatial arrangements are, in average, 16 nucleotides per mini-hairpin which includes 7 nt in the stem, 5.6 nt in the loop and 3.7 nt in the inter-hairpin spacer. The constitutive splicing system of ovomucoid-pre-mRNA is characterized by preferred order of intron removal of 5/6 > 7/4 > 2/1 > 3. The 5' splice sites (5'SS), branch point sequences (BPS) and 3' splice sites (3'SS) were identified and free energies involved have been estimated in 7 splice sites. Thermodynamic barriers for splice sites from the least (|lowest| -Kcal) were 5, 4, 7, 6, 2, 1, and 3; i.e., -18.7 Kcal, -20.2 Kcal, -21.0 Kcal, -24.0 Kcal, - 25.4 Kcal, -26.4 Kcal and -28.2 Kcal respectively. These are parallel to the kinetic data of splicing order reported in the literature. As a result, the preferred order of intron removals can be described by a consideration of free energy changes involved in the spliceosomal assembly pathway. This finding is consistent with the validity of hnRNP formation mechanisms in previous reports.

키워드

참고문헌

  1. Auweter, S.D., Oberstrass, F.C., and Allain, F.H.-T. (2006). Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res. 34, 4943-4959 https://doi.org/10.1093/nar/gkl620
  2. Berget, S.M. (1995). Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411-2414 https://doi.org/10.1074/jbc.270.6.2411
  3. Beyer, A.L., and Osheim, Y.N. (1990). Ultrastructural analysis of the ribonucleoprotein substrate for pre-mRNA processing. In The Eukaryotic Nucleus; Molecular Biochemistry and Macromolecular Assemblies, Vol. 2, P.R. Strauss, and S.H. Wilson, eds. (The Telford Press, Chapter 18), pp. 431-451
  4. Branlant, C., Krol, A., Ebel, J.-P., Lazar, E., Gallinaro, H., Jacob, M., Sri-Widada, J., and Jeanteur, P. (1980). Nucleotide sequences of nuclear U1A RNAs from chicken, rat and man. Nucleic Acids. Res. 8, 4143-4154 https://doi.org/10.1093/nar/8.18.4143
  5. Brow, D.A. (2002). Allosteric cascade of spliceosome activation. Annu. Rev. Genet. 36, 333-360 https://doi.org/10.1146/annurev.genet.36.043002.091635
  6. Buratti, E., and Baralle, F.E. (2004). Influence of RNA Secondary Structure on the Pre-mRNA Splicing Process. Mol. Cell. Biol. 24, 10505-10514 https://doi.org/10.1128/MCB.24.24.10505-10514.2004
  7. Cartegni, L., Wang, J., Zhu, Z., Zhang, M.Q., and Krainer, A.R. (2003). http://rulai.cshl.edu/tools/ESE
  8. Catterall, J.F., Stein, J.P., Kristo, P., Means, A.R., and O'Malley, B.W. (1980). Primary sequence of ovomucoid messenger RNAas determined from cloned complementary DNA. J. Cell Biol. 87, 480-487 https://doi.org/10.1083/jcb.87.2.480
  9. Draper, D.E. (1995). Protein-RNA recognition. Annu. Rev. Biochem.64, 593-620 https://doi.org/10.1146/annurev.bi.64.070195.003113
  10. Epstein, P., Reddy, R., Henning, D., and Busch, H. (1980). The nucleotide sequence of Nuclear U6 (4.7 S) RNA. J. Biol. Chem. 255, 8901-8906
  11. Freier, S., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T., and Turner, D.H. (1986). Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. USA 83, 9373-9377 https://doi.org/10.1073/pnas.83.24.9373
  12. Freund, M., Asang, C., Kammler, S., Konermann, C., Krummheuer, J., Hipp, M., Meyer, I., Gierling, W., Theiss, S., Preuss, T., et al. (2003). A novel approach to describe a U1 snRNA binding site. Nucleic Acids Res. 31, 6963-6975 https://doi.org/10.1093/nar/gkg901
  13. Freund, M., Hicks, M.J., Konermann, C., Otte, M., Hertel, K.J., and Schaal, H. (2005). Extended base pair complementarity between U1 snRNA and the 5′ splice site does not inhibit splicing in higher eukaryotes, but rather increases 5′ splicing site recognition. Nucleic Acids Res. 35, 5112-5119
  14. Gerlinger, P., Krust, A., LeMeur, M., Perrin, F., Cochet, M., Gannon, F., Dupret, D., and Chambon, P. (1982). Multiple initiation and polyadenylation sites for the chicken ovomucoid transcription unit. J. Mol. Biol. 162, 345-364 https://doi.org/10.1016/0022-2836(82)90531-9
  15. Goguel, V., Wang, Y., and Rosbash, M. (1993). Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing. Mol. Cell. Biol. 13, 6841-6848 https://doi.org/10.1128/MCB.13.11.6841
  16. Isaacs, N. (1995). Kinetics and thermodynamics. In the book 'Physical Organic Chemistry' Chapter 2, (England: Longman Scietific and Technical, Longman House, Burnt Mill, Harlow Essex CM20 2JE), pp. 87-128
  17. Jamison, S.F., Pasman, Z., Wang, J., Will, C., L$\ddot{u}$hrmann, R., Manley, J.L., and Garcia-Blanco, M.A. (1995). U1 snRNP-ASF/SF2 interaction and 5′ splice site recognition: characterization of required elements. Nucleic Acids Res. 23, 3260-3267 https://doi.org/10.1093/nar/23.16.3260
  18. Kim, H.-J., and Han, K. (1995). Automated modeling of the RNA folding process. Mol. Cells 5, 406-412
  19. Korf, G.M., and Stumph, W.E. (1986). Chicken U2 and U1 RNA genes are found in very different genomic environment but have similar promoter structures. Biochemistry 25, 2041-2047 https://doi.org/10.1021/bi00356a031
  20. Lewin, B. (1994; 2008). RNA splicing and processing. Genes IX, Chapter 26, (Pearson Prentice Hall, Pearson Education, Inc.), pp. 667-705
  21. Liu, Z.-R. (2002). p68 RNA Helicase is an essential human splicing factor that acts at the U1 snRNA-5′ splice site duplex. Mol. Cell. Biol. 22, 5443-5450 https://doi.org/10.1128/MCB.22.15.5443-5450.2002
  22. Lund, M., and Kjems, J. (2002). Defining a 5′ splice site by functional selection in the presence and absence of U1 snRNA 5′ end. RNA 8, 166-179 https://doi.org/10.1017/S1355838202010786
  23. Madhani, H.D., and Guthrie, C. (1994). Dynamic RNA-RNA interactions in the spliceosome. Ann. Rev. Genet. 28, 1-26 https://doi.org/10.1146/annurev.ge.28.120194.000245
  24. Roca, X., Sachidanandam, R., and Krainer, A. (2005). Determinants of the inherent strength of human 5′ splice sites. RNA 11, 683-698 https://doi.org/10.1261/rna.2040605
  25. Ro-Choi, T.S. (1999). Nuclear snRNA and nuclear function (Discovery of 5′ cap structures in RNA). Crit. Rev. Eukaryot. Gene Expr. 9, 107-158 https://doi.org/10.1615/CritRevEukarGeneExpr.v9.i2.20
  26. Ro-Choi, T.S., and Choi, Y.C. (2003). Structural elements of dynamic RNA strings. Mol. Cells 16, 201-210
  27. Ro-Choi, T.S., and Choi, Y.C. (2007). A modeling study of cotranscriptional metabolism of hnRNP Using FMR1 gene. Mol. Cells 23, 228-238
  28. Ro-Choi, T.S., and Henning, D. (1977). Sequence of 5′ oligonucleotide of U1 RNA from Novikoff hepatoma cells. J. Biol. Chem. 252, 3814-3820
  29. Ro-Choi, T.S., Reddy, R., Choi, Y.C., Raj, N.B., and Henning, D. (1974). Primary sequence of U1 nuclear RNA and unusual feature of 5′ end structure of LMWN RNA. Fed. Proc. Fed. Am. Soc. Exp. Biol. 33, 1548
  30. Rossi, F., Forne, T., Antoine, E., Tazi, J., Brunel, C., and Cathala, G. (1996). Involvement of U1 small nuclear ribonucleoproteins (snRNP). in 5′ splice site-U1 snRNP interaction. J. Biol. Chem. 271, 23985-23991 https://doi.org/10.1074/jbc.271.39.23985
  31. Samarina, O.P., and Krichevskaya, A.A. (1981). Nuclear 30S RNP Particles. In the book 'The Cell Nucleus; Nuclear Particles' Part B., H. Busch, ed, (Academic Press, Inc.), pp. 1-48
  32. Schulz, G.E., and Schirmer, R.H. (1985). Protein-Ligand Interactions. Principles of Protein Structure, Chapter 10, (New York, Berlin, Heidelberg, Tokyo: Springer-Verlag)
  33. Seetharaman, M., Eldho, N.V., Padgett, R.A., and Dayie, K.T. (2008). Structure of a self-splicing group II intron catalytic effector domain 5: Parallels with spliceosomal U6 RNA. RNA 12, 235-247 https://doi.org/10.1261/rna.2237806
  34. Shahied-Milam, L., Soltaninassab, S.R., Iyer, G.V., and LeStourgeon, W.M. (1998). The heterogenous nuclear ribonucleoprotein C protein tetramer binds U1, U2, and U6 snRNAs through its high affinity RNA bindinf domain (the bZIP-like motif). J. Biol Chem. 273, 21359-21367 https://doi.org/10.1074/jbc.273.33.21359
  35. Skoglund, U., Andersson, K., Björkroth, B., Lamb, M.M., and Daneholt, B. (1983). Visualization of the formation and transport of a specific hnRNP particle. Cell 34, 847-855 https://doi.org/10.1016/0092-8674(83)90542-1
  36. Staley, J., and Guthrie, C. (1999). An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol. Cell 3, 55-64 https://doi.org/10.1016/S1097-2765(00)80174-4
  37. Stein, J.P., Catterall, J.F., Kristo, P., Means, A.R., and O'Malley, B.W. (1980). Ovomucoid intervening sequences specify functional domains and generate protein polymorphism. Cell 21, 681-687 https://doi.org/10.1016/0092-8674(80)90431-6
  38. Toor, N., Keating, K.S., Taylor, S.D., and Pyle, A.M. (2008). Crystal structure of a self-spliced group II intron. Science 320, 77-82 https://doi.org/10.1126/science.1153803
  39. von Heijine, G. (1987). Sequence analysis in molecular biology, Chapter 4, Nucleotide sequences: what you can do with your sequence once you have it (Academic Press), pp. 19-80
  40. Xia, T., Mathews, D.H., and Turner, D.H. (2001). Thermodynamics of RNA secondary structure formation. In RNA, Chapter 2, D. Soll, S. Nishimura, and P.B. Moore, eds., pp. 21-48

피인용 문헌

  1. Chemical Approaches for Structure and Function of RNA in Postgenomic Era vol.2012, pp.None, 2009, https://doi.org/10.1155/2012/369058