• Title/Summary/Keyword: Binary Mixtures

Search Result 336, Processing Time 0.031 seconds

Morphology and Crystallization in Mixtures of Poly(methyl methacrylate)-Poly(pentafluorostyrene)-Poly(methyl methacrylate) Triblock Copolymer and Poly(vinylidene fluoride)

  • Kim, Geon-Seok;Kang, Min-Sung;Choi, Mi-Ju;Kwon, Yong-Ku;Lee, Kwang-Hee
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.757-762
    • /
    • 2009
  • The micro domain structures and crystallization behavior of the binary blends of poly(methyl methacrylate)-b-poly(pentafluorostyrene)-b-poly(methyl methacrylate) (PMMA-PPFS-PMMA) triblock copolymer with a low molecular weight poly(vinylidene fluoride) (PVDF) were investigated by small-angle X-ray scattering (SAXS), small-angle light scattering (SALS), transmission electron microscopy (TEM), optical microscopy, and differential scanning calorimetry (DSC). A symmetric, PMMA-PPFS-PMMA triblock copolymer with a PPFS weight fraction of 33% was blended with PVDF in N,N-dimethylacetamide (DMAc). In the wide range of PVDF concentration between 10.0 and 30.0 wt%, PVDF was completely incorporated within the PMMA micro domains of PMMA-PPFS-PMMA without further phase separation on a micrometer scale. The addition of PVDF altered the phase morphology of PMMA-PPFS-PMMA from well-defined lamellar to disordered. The crystallization of PVDF significantly disturbed the domain structure of PMMA-PPFS-PMMA in the blends, resulting in a poorly-ordered morphology. PVDF displayed unique crystallization behavior as a result of the space constraints imposed by the domain structure of PMMA-PPFS-PMMA. The pre-existing microdomain structures restricted the lamellar orientation and favored a random arrangement of lamellar crystallites.

Measurement and Prediction of Autoignition Temperature of n-Hexanol+p-Xylene Mixture (노말헥산올과 파라자일렌 혼합물의 최소자연발화온도 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-55
    • /
    • 2016
  • The autoignition temperature (AIT) of a material is the lowest temperature at which the material will spontaneously ignite. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs of n-hexanol+p-xylene system by using ASTM E659 apparatus. The AITs of n-hexanol and p-xylene system which constituted binary system were $275^{\circ}C$ and $557^{\circ}C$, respectively. The experimental AITs of n-hexanol+p-xylene system system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation).

Novel Tm(III) Membrane Sensor Based on 2,2'-Dianiline Disulfide and Its Application for the Fluoride Monitoring of Mouth Wash Preparations

  • Ganjali, Mohammad Reza;Norouzi, Parviz;Tamaddon, Atefeh;Husain, Syed Waqif
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1418-1422
    • /
    • 2006
  • In this work the construction of a novel poly(vinyl chloride) membrane sensor based on 2,2'-dianiline disulfide (DADS) as a neutral carrier, o-nitrophenyloctyl ether (NPOE) as a plasticizer and sodium tetraphenyl borate (NaTPB) as an anionic site with unique selectivity towards Tm(III) ions is reported. The electrode has a linear dynamic range between $1.0\;{\times}\;10^{-6}$ and $1.0\;{\times}\;10^{-2}$ M, with a nice Nernstian slope of 19.5 ${\pm}$ 0.3 mV per decade and a detection limit of $4.0\;{\times}\;10^{-7}$ M at the pH range of 4.8-8.5. It has a very fast response time (<15 s) in the whole concentration range, and can be used for at least 4 weeks without any considerable divergence in the electrode potentials. The proposed sensor revealed comparatively good selectivity with respect to most common metal ions, and especially lanthanide ions. It was used as an indicator electrode in the potentiometric titration of Tm(III) ions with EDTA and in direct determination of concentration of Tm(III) ions in binary mixtures. It was also applied in determination of fluoride ions in mouth wash preparations.

Correlation of the Rates of Solvolysis of 4-Morpholinecarbonyl Chloride Using the Extended Grunwald-Winstein Equation

  • Kim, Ran;Ali, Dildar;Lee, Jong-Pal;Yang, Ki-Yull;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1963-1967
    • /
    • 2010
  • The rates of solvolysis of 4-morpholinecarbonyl chloride (MPC) have measured at $35.0^{\circ}C$ in water, $D_2O$, $CH_3OD$, and in aqueous binary mixtures of acetone, ethanol, methanol, and 2,2,2-trifluoroethanol. An extended (two-term) Grunwald-Winstein equation correlation gave sensitivities towards changes in solvent nucleophilicity and solvent ionizing power as expected for a dissociative $S_N2$ and/or $S_N1$(ionization) pathway. For nine solvents specific rates were determined at two additional temperatures and higher enthalpies and smaller negative entropies of activation were observed, consistent with the typical dissociative $S_N2$ or $S_N1$(ionization) pathway. The solvent deuterium isotope effect values for the hydrolysis of MPC of $k_{H_2O}/k_{D_2O}$ = 1.27 and for the methanolysis of MPC of $k_{MeOH}/k_{MeOD}$ = 1.22 are typical magnitudes of the $S_N1$ or ionization mechanism.

Measurement and Prediction of Autoignition Temperature of n-Butanol+p-Xylene Mixture (노말부탄올과 파라자일렌 혼합물의 최소자연발화온도 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • The autoignition temperature (AIT) of a substance is the lowest temperature at which the vapor ignites spontaneously from the heat of the environment. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures in the process. This study measured the AITs of n-butanol+p-xylene mixture by using ASTM E659 apparatus. The AITs of n-butanol and p-xylene which constituted binary system were $340^{\circ}C$ and $557^{\circ}C$, respectively. The experimental AITs of n-butanol+p-xylene mixture were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation).

The Prediction of Vapor-Liquid Equilibrium Data for Cyclohexanol-Cyclohexanone System at Subatmospheric Pressure (감압하에서 2성분 Cyclohexanol-Cyclohexanone계에 대한 기-액평형치의 추산)

  • Shim, Hong-Seub;Kim, Jong-Shik
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.677-681
    • /
    • 1999
  • For the binary cyclohexanol-cyclohexanone system the vapor-liquid equilibrium data, which are the necessary ones for the design of the distillation columns in separation process of volatile liquid-mixtures, are measured at subatmospheric pressure of 150, 300 and 500 mmHg. An empirical relation between logarithmic values of relative volatility(log $\alpha$) and liquid phase composition(x), which predicts the vapor-liquid equilibrium data, is obtained from above measured data of 150, 300 and 500 mmHg and the published ones of 30, 100, 200, 395 and 750 mmHg. The predicted data are compared with the measured and published ones to be in good agreement.

  • PDF

Measurement and Prediction of Autoignition Temperature of n-Butanol and sec-Butanol System (노말부탄올과 2차부탄올 계의 최소자연발화온도의 측정 및 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • The autoignition temperature (AIT) is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs and ignition delay time for n-Butanol+sec-Butanol system by using ASTM E659 apparatus. The AITs of n-Butanol and sec-Butanol which constituted binary system were $340^{\circ}C$ and $447^{\circ}C$, respectively. The experimental AITs of n-Butanol+sec-Butanol system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D. (average absolute deviation).

Measurement of Autoignition Temperature of Propionic Acid and 3-Hexanone System (Propionic acid와 3-Hexanone 계의 최소자연발화온도의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.44-49
    • /
    • 2014
  • The autoignition temperaturs (AIT) of solvent mixture is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AIT and ignition delay time for Propionic acid and 3-Hexanone system by using ASTM E659 apparatus. The AITs of Propionic acid and 3-Hexanone which constituted binary system were $511^{\circ}C$ and $425^{\circ}C$, respectively. The experimental AIT of Propionic acid and 3-Hexanone system were a good agreement with the calculated AIT by the proposed equations with a few average absolute deviation (A.A.D.). And Propionic acid and 3-Hexanone system was shown the minimum autoignition temperature behavior (MAITB).

A Study of Minimum Autoignition Temperature Behavior (MAITB) of Benzene and n-Hexane Mixture (벤젠과 노말헥산 혼합물의 최소자연발화온도 거동에 관한 연구)

  • Ha, Dong-Myeong;Kim, Kyu-Hyun
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2013
  • The autoignition temperature (AIT) is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs and ignition delay time for Benzene and n-Hexane system by using ASTM E659 apparatus. The AITs of Benzene and n-Hexane which constituted binary system were $583^{\circ}C$ and $240^{\circ}C$, respectively. The experimental AITs of Benzene and n-Hexane system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D. (average absolute deviation).

Measurement and Prediction of the Flash Point for the Flammable Binary Mixtures using Tag Open-Cup Apparatus (Tag식 개방계 장치를 이용한 가연성 이성분계 혼합물의 인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sungjin;Song, Young-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.181-185
    • /
    • 2005
  • The flash point is one of the most important combustible properties used to determine the potential for fire and explosion hazards of industrial material. An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The flash points for the n-butanol+n-propionic acid and n-propanol+n-propionic acid systems were measured by using Tag open-cup apparatus(ASTM D 1310-86). The experimental data were compared with the values calculated by the laws of Raoult and van Laar equation. The calculated values based on the van Laar equation were found to be better than those based on the Raoult's law.