노말부탄올과 2차부탄올 계의 최소자연발화온도의 측정 및 예측

하동명

세명대학교 보건안전공학과

Measurement and Prediction of Autoignition Temperature of n-Butanol and sec-Butanol System

Dong-Myeong Ha

Dept. of Occupational Health and Safety Engineering, Semyung University

(Received August 9, 2012; Revised September 11, 2012; Accepted October 12, 2012)

요 약

최소자연발화온도는 가연성액체의 안전한 취급을 위해서 중요한 지표가 된다. 본 연구에서는 ASTM E659 장치를 이 용하여 가연성 혼합물인 n-Butanol+sec-Butanol 계의 최소자연발화온도와 발화지연시간을 측정하였다. 2성분계를 구성하는 순수물질인 n-Butanol과 sec-Butanol의 최소자연발화온도는 각 각 340°C, 447°C로 측정되었다. 그리고 측정된 n-Butanol+sec-Butanol 계의 최소자연발화온도는 제시된 식에 의한 예측값과 적은 평균절대오차에서 일치하였다.

ABSTRACT

The autoignition temperature (AIT) is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs and ignition delay time for n-Butanol+sec-Butanol system by using ASTM E659 apparatus. The AITs of n-Butanol and sec-Butanol which constituted binary system were 340 °C and 447 °C, respectively. The experimental AITs of n-Butanol+sec-Butanol system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D. (average absolute deviation).

Keywords: AIT (Autoignition temperature), Ignition delay time (time lag), ASTM E659, n-Butanol+sec-Butanol system

1. 서 론

최근 인천청라지구 주물 공장과 화성 페인트 공장의 화 재 사고를 비롯한 화학산업에서의 사고를 살펴보면, 취급 물질의 부주의로 인한 재해로서 인재라고 볼 수 있다. 산 업 현장에서 취급하고 있는 각종 화학물질의 안전관리를 어렵게 하는 이유는 취급하는 물질의 화재 및 폭발 특성치 (연소특성치)에 관한 자료가 부족하거나, 정확하지 않은 연소특성치를 사용하기 때문이다.

가연성물질의 연소현상 가운데 하나인 자연발화 (Autoignition 혹은 Spontaneous Ignition)는 가연성혼합기 체에 열 등의 형태로 에너지가 주어졌을 때 스스로 타기 시작하는 산화현상으로, 주위로부터 충분한 에너지를 받아 서 스스로 점화할 수 있는 최저온도를 최소자연발화온도 (AIT: Autoignition Temperature)라고 한다. 최소자연발화 온도는 개시온도, 증기 농도, 용기 크기, 산소농도, 계의

E-Mail: hadm@semyung.c.kr TEL: +82-43-649-1321, FAX: +82-43-649-1777 압력, 촉매, 발화지연시간 등 다양한 실험 조건에 영향을 받는다. 따라서 문헌들 마다 다른 값들이 제시되고 있다⁽¹⁾. 그동안 연구를 살펴보면 대부분 순수물질에 국한되어 연구가 진행되고 있으며, 혼합물에 대한 연구는 거의 없는 실정이다. 최근 Ha⁽²⁻⁴⁾은 n-Butanol과 n-Decane 계, n-Pentanol과 Ethylbenzene 계 그리고 반도체 공정에서 널리 사용되고 있는 Dichlorosilane과 Trichlorosliane 계의 최소 자연발화온도를 측정하였다.

순수물질의 최소자연발화온도를 문헌들을 고찰하면, 동 일 물질인데도 불구하고 문헌에 따라 다른 최소자연발화 온도가 제시되고 있다^(1,5). 따라서 사업장에서 사고를 예방 하기 위해서는 정확한 연소 특성 자료를 이용해야 해야 한 다. 그러나 문헌에 제시된 대부분의 자료들은 과거 표준 장치 및 자체 제작된 장치 등을 사용해서 얻은 결과이므로, 최근에 고안된 표준 장치를 이용한 결과가 매우 유용한 자 료가 될 것으로 본다.

ISSN: 1738-7167 DOI: http://dx.doi.org/10.7731/KIFSE.2012.26.5.048 본 연구에서는 ASTM E659(Koehler)⁽²⁻⁴⁾를 사용하여 n-Butanol과 sec-Butanol(2차부탄올)의 혼합물에 대해 최소 자연발화온도를 측정하였다. 이성분계의 최소자연발화온 도를 측정에 앞서 이성분계를 구성하는 순수성분인 과 n-Butanol과 sec-Butanol의 자연발화온도와 발화지연시간 관 계를 측정하였으며, 측정된 최소자연발화온도는 문헌값들 과 비교 고찰하였다. 또한 n-Butanol과 sec-Butanol 계에 대해 최소자연발화온도와 발화지연시간을 측정하였고, 또 한 혼합 조성 변화에 따른 최소자연발화온도를 예측할 수 있는 모델을 제시하였다. 제시된 실험자료 및 예측 모델은 이들 물질을 취급하는 공정에서 화재 및 폭발의 방호 자료 로 제공하는데 목적이 있다.

열발화 이론에 의한 자연발화온도와 발화지연시간의 관계

일반적으로 열발화 이론은 두 가지로 대별할 수 있다. 하 나는 발열과 방열의 관계를 정상상태라고 가정한 Semenov 이론이며, 다른 하나는 Semenov 이론을 보강한 것으로 실 제 착화는 계의 한 장소에서 온도 상승이 계속되면 이곳에 착화가 일어난다. 이러한 경우를 고려하여 비교적 간단한 모델을 이용하여 착화를 설명한 이론이 Frank-Kamenetskii 이론이다^(5,6).

본 연구에서는 Frank-Kamenetskii 이론을 도입하여 발화 온도와 발화지연시간의 간략히 설명하고자 한다. 계의 크 기 변화와 발화임계 주위 온도 관계로 Frank-Kamenetskii 의 매개변수(δ)는 다음과 같이 나타낼 수 있다.

$$\delta = \frac{r_0^2 Q E \rho A exp\left(-\frac{E}{RT_0}\right)}{kRT_0^2}$$
(1)

여기서 δ는 주위온도에서의 열방출률, 반응물의 차원, r₀는 반응물의 차원, T₀는 주위온도, Q는 연소열, ρ는 밀도, E 는 활성화에너지, k는 열전도도, R는 기체상수이다.

발화지연은 열 생성(발열화학반응)과 열 손실(액체연료 의 증발)사이의 경쟁 때문에 절연물질 안에 가연성의 증발 유체에 대한 특성을 갖는다. 따라서 Frank-Kamenetskii 방 법과 비슷하게 발화지연시간과 초기온도 역수를 이용한다.

이를 간략히 설명하면 다음과 같다. 일반적으로 실험에 서 측정된 값들은 발화지연시간 lnt와 초기온도의 관계로 표현할 수 있다. 즉, 온도가 높을수록 발화지연시간을 짧 아진다는 것을 의미한다.

$$\ln t \approx a \left(\frac{1}{T_0}\right) + b \tag{2}$$

따라서 식(2)에서 발화지연시간과 초기발화온도의 관계에 서 선형최소자승법(Least Square Method)을 사용하여 매 개변수인 a와 b를 결정할 수 있다. 실험에서 얻어진 발화 온도와 발화지연시간을 이용하면, 활성화에너지(E)는 식 (1)으로부터 얻는 대수온도곡선 대 1/T₀의 관계를 이용하 여 결정할 수 있다.

식(2)를 이용하면, 발화온도에 대한 발화지연시간을 예 측할 수 있다.

3. 자연발화온도 실험

3.1 실험장치 및 방법

본 실험에서는 액체 화학물질의 자연발화점 측정 장치 로서 ASTM E659(Koehler 사)를 사용하여 자연발화온도 를 측정하였으며, 장치는 크게 Furnace, Temperature Controller, Thermocouple, Test Flask, Hypodermic Syringe, Mirror, Air Gun으로 구성되어 있다.

실험 방법은 기준 온도를 설정하고, 실험 장치를 가열하고, 설정온도에 도달하면 플라스크 내부에 주사기로 시료 를 0.1 ml를 넣는다. 그리고 10분 동안 관찰 후 발화가 일 어나지 않으면 다시 온도를 설정한 후 10분 전에 발화가 일어나면 설정 온도 보다 30 °C 낮게 설정하고 3~5 °C 혹 은 10 °C씩 증가시키면서 측정하며, 발화가 일어났을 때 시간과 온도를 기록한다^(4,5).

3.2 실험재료

본 실험에 사용된 시약은 n-Butanol과 sec-Butanol은 Junsei(Japan) 사로서 순도는 각각 99%의 시약을 사용하 였으며, 혼합물의 발화온도 측정은 순수물질을 각 각 다른 몰비(Mole Fraction)로 혼합하여 실험하였다.

4. 발화지연시간 및 혼합물의 최소자연발화온도의 예측 모델

4.1 다중회귀분석

본 연구에서는 순수물질인 경우는 발화온도에 따른 발 화지연시간의 관계를 분석하고, 혼합물에서는 조성변화에 의한 최소자연발화온도의 관계를 설명하기 위해 다중회귀 분석(Multiple Regression Analysis)을 사용하였다. 다중회 귀분석은 변수와 응답의 관계를 보다 정량적으로 표시하 기 위해서 사용된 방법으로 수학과 통계학적인 방식에 의 거해서 종속변수와 독립변수의 관계식을 구하는 방법이다. 이 방법론은 그 동안 최적조건(Optimum Condition)을 구 하는 방식 또는 최적화(Optimization)에 널리 이용되어 왔 다^(4,6).

이를 간략히 소개하면, 제시한 모델을 다항식의 일반적 인 형태로 표시하면 다음과 같다.

$$Y=a+bx+cx^{2}+dx^{3}+ex^{4}+\cdots+px^{p}+\cdots$$
(3)

여기서 각 매개변수 a, b, c, d, e, …을 추산하기 위해 최

J. of Korean Institute of Fire Sci. & Eng., Vol. 26, No. 5, 2012

소화 방법을 이용하였다. 이 방법은 S.S.D.(Sum of Square of Deviation)을 구하기 위해 각 매개변수를 편미분하여 이 를 영(Zero)으로 두어서 얻어지는 정규식(Normal Equation) 의 해를 구하면 된다.

4.2 자연발화온도에 의한 발화지연시간의 예측 모델

대부분의 문헌들에서는 자연발화온도와 발화지연시간의 관계를 다음과 같은 선형 식으로 표현하고 있다⁽⁷⁾.

$$\log \tau = \left(\frac{A}{T}\right) + B \tag{4}$$

여기서 7는 발화지연시간, T는 자연발화온도[K], 그리고 A와 B는 상수이다.

본 실험에서 얻은 각 순수물질의 자연발화온도와 발화 지연시간을 식(5)에 의해 회귀분석하여 최적화된 예측식을 얻을 수 있다.

$$\ln\tau = A + \left(\frac{E}{RT}\right) \left(=A + B\left(\frac{1}{T}\right)\right)$$
(5)

또한 Semenov⁽⁸⁾는 활성화에너지(E)를 계산하기 위해 다 음과 같은 식을 제시하였다. 즉 식(4)의 계수를 계산하다면 이를 식(6)에 대입하여 활성화에너지를 계산할 수 있다.

$$\log \tau = \frac{52.55E}{T} + B \tag{6}$$

4.3 혼합물의 최소자연발화온도의 예측 모델

본 연구에서 얻은 측정값을 분석한 결과, 조성 변화에 따른 최소자연발화온도가 증가하는 경향을 보이고 있다. 따라서 조성에 의한 최소자연발화온도 예측 모델을 다음 과 같은 모델을 제시하여 최적화 된 모델을 찾고자 한다.

 $T_{AIT, MIX} = a + bX_1 \tag{7}$

 $T_{AIT, MIX} = a + bX_1 + cX_1^2$ (or $T_{AIT, MIX} = aX_1 + bX_2 + cX_1X_2$) (8)

$$T_{AIT, MIX} = a + bX_1 + cX_1^2 + dX_1^3$$
(9)

4.4 실험값과 예측값의 비교 방법

측정값과 예측값의 차이의 정도를 알기 위해서 A.A.D. (Average Absolute Deviation)을 사용하였다^(3,4).

$$A.A.D. = \sum \frac{\left|\tau_{est.} - \tau_{exp.}\right|}{N}$$
(10)

$$A.A.D.=\sum \frac{|AIT_{est.} - AIT_{exp.}|}{N}$$
(11)

여기서 τ_{est} 는 예측된 발화지연시간, τ_{exp} 는 실험에서 얻은 발화지연시간이고, AIT $_{est}$ 는 예측된 자연발화온도, AIT $_{exp}$. 는 실험에서 얻은 자연발화온도이며, 그리고 N은 자료수 이다.

또한 측정값과 예측값의 통계 분석을 위해 표준편차, 표 본 결정계수를 사용하였다^(4,6).

$$S = \sqrt{\frac{\sum (Y_i - y_i)^2}{n - 1}}$$
(12)

$$r^{2} = \frac{SSR}{SST}$$
(13)

여기서 S는 결정값의 표준오차, r²는 표본 결정계수, SSR 은 회귀에 의한 제곱합(Sum of Squares due to Regression), SST는 총 제곱합(Total Sum of Squares)이다.

5. 결과 및 고찰

5.1 순수물질의 최소자연발화온도 고찰

5.1.1 노말부탄올의 자연발화온도 고찰

본 실험에서는 330 ℃에서는 발화가 일어나지 않았으며, 10 ℃ 얼린 340 ℃에서 실험한 결과 22.26 sec에서 발화되어 1~2 ℃ 낮추어 실험하였으나 비발화되었다. 따라서 447 ℃ 에서 최소자연발화온도를 찾을 수 있었다. 최소자연발화온 도를 기준으로 5 ℃ 혹은 10 ℃ 상승시켜 발화지연시간을 측정한 결과 380 ℃에서는 5.95 sec, 400 ℃에서는 4.27 sec, 430 ℃에서는 2.96 sec, 460 ℃에서는 1.71 sec에 발화하였 다. 제시한 실험에서 얻은 발화온도와 발화지연 자료를 식 (5)을 이용하여 발화온도 의한 발화지연시간을 회귀분석한 결과 예측식은 식(14)과 같다.

$$\ln\tau = -10.75 + 8282.56 \left(\frac{1}{T}\right) \tag{14}$$

Table 1. Comparison of Experimental and Calculated Delay

 Time by AIT for n-Butanol

No.	T [k]	$\tau_{exp.}$ [s]	$ln\tau_{exp.}$	τ _{pred.} (Eq. 14)
1	613.15	22.26	3.10279	15.81
2	623.15	12.79	2.54866	12.73
3	638.15	9.08	2.20607	10.32
4	643.15	8.07	2.08815	8.42
5	653.15	5.95	1.78339	6.92
6	663.15	4.78	1.56444	5.71
7	673.15	4.27	1.45161	4.74
8	683.15	3.64	1.29198	3.96
9	693.15	3.45	1.23837	3.33
10	703.15	2.96	1.08519	2.81
11	713.15	3.00	1.09861	2.38
12	728.15	2.10	0.74194	2.03
13	733.15	1.71	0.53649	1.73
AAD	-	-	-	0.91

Table 1에서 알수 있듯이 Arrhenius 형태의 예측 식에 의한 예측값이 실험값과 약간의 차이를 보이고 있고, 비선 형 형태 예측식에 의한 예측값이 실험값과 일치함을 보여 주고 있다. 이때의 결정계수는 0.96이다.

식(14)을 log 자와 (1/T)로 나타내면 식(15)과 같다.

$$\log \tau = -4.67 + 5843.03 \left(\frac{1}{T}\right)$$
 (15)

Semenov가 제시한 식(6)을 식(15)에 대입한 결과 활성화 에너지(E)는 약 54.1 kJ/mol이 된다.

Table 1은 식(14)에 의한 실험값과 예측값의 평균오차는 1.26 sec, 결정계수(r²)는 0.99로써 예측값과 실험값은 거의 일치하였다.

5.1.2 sec-Butanol의 자연발화온도 고찰

본 실험에서는 420 °C, 430 °C, 440 °C에서는 발화가 일 어나지 않았으며, 450 °C에서는 7.63 sec에서 발화가 발생 되었다. 2 °C 낮춘 447 °C에서는 11.42 sec로 발화가 발생 되었으며, 다시 1 °C 낮춘 446 °C에서 실험한 결과 비발화 가 되었다. 따라서 447 °C에서 최소자연발화온도를 찾을 수 있었다. 최소자연발화온도를 기준으로 온도를 5 °C 혹은 10 °C 상승시켜 발화지연시간을 측정한 결과, 470 °C에서 는 4.69 sec, 490 °C에서는 2.78 sec, 510 °C에서는 1.91 sec 에 발화하였다.

제시한 실험에서 얻은 발화온도와 발화지연 자료를 식 (5)을 이용하여 발화온도 의한 발화지연시간을 회귀분석한 결과 예측식은 식(16)과 같다.

$$\ln\tau = -18.72 + 15072.88 \left(\frac{1}{T}\right) \tag{16}$$

식(16)을 log 자와 (1/T)로 나타내면 식(17)과 같다.

$$\log \tau = -8.15 + 6546.31 \left(\frac{1}{T}\right)$$
 (17)

Semenov가 제시한 식(6)을 식(17)에 대입한 결과 활성화 에너지(E)는 약 124.6 kJ/mol이 된다.

Table 2은 실험값과 식(16)에 의한 예측된 발화지연시간 을 나타내었다. 실험값과 예측값의 평균오차는 0.54 sec, 결정계수(r²)는 0.92로서 예측값과 실험값의 모사성은 크 게 나타났다.

Table 2. Comparison of Experimental and Calculated Delay

 Time by AIT for sec-Butanol

No.	T [K]	$\tau_{exp.}$ [s]	$ln\tau_{exp.}$	τ _{est.} (Eq. 16)
1	720.15	11.42	2.43537	9.56
2	723.15	7.63	2.03208	8.40
3	733.15	5.67	1.73518	6.32
4	743.15	4.69	1.54543	4.79
5	753.15	3.02	1.10525	3.21
6	763.15	2.78	1.02245	2.82
7	773.15	2.10	0.74193	2.18
8	783.15	1.91	0.64710	1.70
A.A.D.	-	-	-	0.54

5.1.3 순수물질의 최소자연발화온도 비교

본 연구에서는 이성분계 인화성 액체혼합물인 n-Buanol+ sec-Butanol계 구성하는 2개의 순수물질에 대하여 최소자 연발화온도를 측정하였으며, 측정된 실험값을 기존 문헌값 들⁽⁹⁻¹⁹⁾과 비교하여 Table 3에 나타내었다. n-Butanol의 최 소자연발화온도 측정값은 340 °C로서⁽⁶⁾, NFPA, SFPE, Sigma, CRC 등에서는 343 °C, Hilado는 359 °C, SAX, Ignition 그리고 Lange에서는 365 °C로서 문헌에 따라 약 20 °C의 차이를 보이고 있다. 본 연구에서 얻은 측정값은 기존 문헌값보다는 3~25 °C 낮게 측정되었다. 또한 Yagyu 는 발화지연시간 5 sec에서 415 °C로 측정하였다.

sec-Butanol의 최소자연발화온도 측정값은 447 °C로서⁽²⁾, NFPA, Sigma, SFPE, CRC 등에서는 405 °C로서 같은 문 헌을 인용한 것으로 판단되며, Zabetakis와 SAX는 406 °C, Hilado와 Scott는 414 °C, Ignition은 427 °C 그리고 Yagyu 는 발화지연시간 5 sec에서 445 °C로 측정하였다. 따라서 문헌에 따라 약 40 °C의 차이를 보이고 있으며, 본 실험에 서는 sec-Butanol의 최소자연발화온도 측정값은 447 °C는 Yagyu의 445 °C와 비슷한 결과를 보이고 있다.

5.2. n-Butanol+sec-Butanol 계의 자연발화온도 고찰

5.2.1 n-Butanol(0.7)+sec-Butanol(0.3)계의 자연발화온도 본 실험에서는 얻은 n-Buatanol의 순수물질 자연발화온 도를 고려하여 340 ℃, 360 ℃, 380 ℃에서 실험한 결과 발화가 일어나지 않았고, 여기서 20 ℃ 올린 400 ℃에서 실험한 결과 7.49 sec에서 발화되어, 2~3 ℃씩 낮게 설정

 Table 3. Comparison of Autoignition Temperatures (AIT) between Experimental Data and Several Reported Data for Pure Substances

Compounds	AITs (°C)											
	This study	NFPA	Sigma	SAX	Ignition	Hilado	SFPE	Scott	Zabetakis	CRC	Lange	Yagyu
n-Butanol	340	343	343	365	365	359	343	345	-	343	365	415 (5 sec)
sec-Butanol	447	405	405	406	427	414	405	414	406	405	-	445 (5 sec)

하여 실험한 결과 내린 390 °C, 10.12 sec에서 최소자연발 화온도를 찾을 수 있었다. 최소자연발화온도를 기준으로 5 °C 혹은 10 °C씩 상승시켜 발화온도를 측정한 결과, 410 °C 에서는 6.88 sec, 430 °C에서는 4.81 sec 그리고 460 °C에 서는 2.08 sec에 발화하였다.

5.2.2 n-Butanol(0.5)+sec-Butanol(0.5)계의 자연발화온도 본 실험에서는 390 °C, 400 °C에서 실험한 결과 발화가 일어나지 않았고, 여기서 10 °C 올린 410 °C에서 실험한 결과 8.68 sec에서 발화되어, 2~3 °C씩 낮게 설정한 결과 발화가 되지 않아서 410 °C를 최소자연발화온도로 찾을 수 있었다. 최소자연발화온도를 기준으로 5 °C 혹은 10 °C 씩 상승시켜 발화온도를 측정한 결과, 430 °C에서는 5.37 sec, 450 °C에서는 4.29 sec 그리고 470 °C에서는 1.89 sec 에 발화하였다.

5.2.3 n-Butanol(0.3)+sec-Butanol(0.7)계의 자연발화온도 본 실험에서는 400 ℃, 410 ℃에서 실험한 결과 발화가 일어나지 않았고, 여기서 10 ℃ 올린 420 ℃에서 실험한 결과 9.59 sec에서 발화되어, 2~3 ℃씩 낮게 설정한 결과 발화가 되지 않아서 415 ℃를 최소자연발화온도로 찾을 수 있었다. 최소자연발화온도를 기준으로 5 ℃ 혹은 10 ℃ 씩 상승시켜 발화온도를 측정한 결과, 440 ℃에서는 5.67 sec, 460 ℃에서는 4.18 sec 그리고 480 ℃에서는 2.48 sec 에 발화하였다.

5.2.4 n-Butanol(0.1)+sec-Butanol(0.9)계의 자연발화온도 본 실험에서는 410 °C, 420 °C에서 실험한 결과 발화가 일어나지 않았고, 여기서 10 °C 올린 430 °C에서 실험한 결과 9.59 sec에서 발화되어, 2~3 °C씩 낮게 설정한 결과 발화가 되지 않아서 423 °C를 최소자연발화온도로 찾을 수 있었다. 최소자연발화온도를 기준으로 5 °C 혹은 10 °C 씩 상승시켜 발화온도를 측정한 결과, 450 °C에서는 5.48 sec, 470 °C에서는 3.27 sec 그리고 490 °C에서는 2.33 sec 에 발화하였다.

5.2.5 n-Butanol+sec-Butanol계의 최소자연발화온도 예측 본 연구에서 얻은 측정값을 분석한 결과 조성 변화에 따 른 최소자연발화온도가 증가하는 경향을 보이고 있다. 따 라서 조성 변화에 의한 최소자연발화온도 예측 모델을 제 시할 수 있다고 판단되어, 식(8)과 식(9)를 회귀분석한 결 과 다음과 같은 최적화된 식을 얻었다.

 $T_{AIT, MIX} = 343.07 + 157.72X_1 - 65.02X_1^2$ (18)

 $T_{AIT, MIX} = 339.3 + 287.4X_1 - 430.41X_1^2 + 245.5X_1^3$ (19)

n-Butanol+sec-Butanol 계에서 각각의 혼합조성에서 얻 은 최소자연발화온도 실험값과 예측식에 의한 예측값을

Mole fractions		AITs()				
X1	X ₂	Exp.	Eq. (19)			
0	1	340	343	339		
0.3	0.7	390	384	393		
0.5	0.5	410	406	406		
0.7	0.3	415	422	414		
0.9	0.1	423	432	428		
1	0	445	436	442		
A.A.D.		-	6.34	2.94		

Figure 1. Comparison of AIT prediction curves with experimental data for n-butanol (X_1) +sec-butanol (X_2) system.

비교하여 Table 4와 Figure 1에 나타내었다. 본 연구에서 제시한 식(19)에 의한 예측값은 실험값의 결정계수(r²)가 0.98로서 모사성이 크게 나타나고 있다. 따라서 본 연구에 서 제시한 식을 이용하여 다른 조성에서의 최소자연발화 온도 예측이 가능해 졌다.

6. 결 론

본 연구는 자연발화온도측정 장치(ASTM E659)를 사용 하여 n-Butanol과 sec-Butanol 혼합물의 최소자연발화온도 를 측정하였다. 이성분계를 구성하는 n-Butanol과 sec-Butanol의 최소자연발화온도를 측정하여 문헌값들과 비교 고찰하였고, 이들의 활성화에너지를 계산하였다. 또한 n-Butanol과 sec-Butanol 계의 측정된 최소자연발화온도를 이용하여 조성 변화에 따른 최소자연발화온도를 예측할 수 모델을 제시하여 다음과 같은 결론을 얻었다. 1) 이성분계를 구성하는 n-Butanol과 sec-Butanol의 최 소자연발화온도는 각각 340 ℃와 447 ℃로 측정되었다.

2) n-Butanol과 sec-Butanol의 활성화에너지는 각각 54.1 kJ/mol과 124.6 kJ/mol이다.

3) n-Butanol+sec-Butanol 계에서 혼합조성 변화에 의 한 최소자연발화온도를 측정한 결과, n-Butanol(0.7)+sec-Butanol(0.3)에서는 390 °C, n-Butanol(0.5)+sec-Butanol(0.5) 에서는 410 °C, n-Butanol(0.3)+sec-Butanol(0.7)에서는 415 °C 그리고 n-Butanol(0.1)+sec-Butanol(0.9)에서는 423 °C로 측정되었다.

4) n-Butanol+sec-Butanol 계에서 조성 변화에 의한 최 소자연발화온도를 예측식은 다음과 같다.

 $T_{AIT, MIX} = 339.3 + 287.4 X_1 - 430.41 X_1^2 + 245.5 X_1^3$

여기서 X₁은 sec-Butanol의 조성이다.

참고문헌

- F. P. Lees, "Loss Prevention in the Process Industries Vol. 1", 2nd ed., Oxford Butterworth-Heinemann (1996).
- D. M. Ha, "Prediction of Autoignition Temperature of n-Decane and sec-Butanol Mixture", Journal of Korean Institute of Fire Science & Engineering, Vol. 26, No. 3, pp. 85-90 (2012).
- D. M. Ha, "Prediction of Minimum Spontaneous Ignition Temperature(MSIT) of the Mixture of n-Pentanol and Ethylbenzene", Journal of the Korean Institute of Gas, Vol. 16, No. 2, pp. 45-51 (2012).
- D. M. Ha, "Characteristics of Auto-ignition for Trichlorosliane and Dichlorosilane-Trichlorosliane Mixtures", Journal of the Korean Institute of Gas, Vol. 14, No. 4, pp. 24-30 (2010).
- I. Goldfrab and A. Zinoviev, "A Study of Delay Spontaneous Insulation Fires", Physics Letter, A 311, pp. 491-500 (2003).
- D. M. Ha and S. K. Hong, "Measurement an Prediction of Autoignition Temperature of n-Butanal+n-Decane System", Journal of Korean Institute of Fire Science & Engi-

neering, Vol. 25, No. 6, pp. 184-189 (2011).

- D. Drysdale, "An Introduction to Fire Dynamics", 2nd ed., John Wiley & Sons (1998).
- N. N. Semenov, "Some Problems in Chemical Kinetics and Reactivity, Vol. 2", Princeton University Press, Princeton, N.J. (1959).
- NFPA, "Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids", NFPA 325M, NFPA (1991).
- R. E. Lenga and K. L. Votoupal, "The Sigma Aldrich Library of Regulatory and Safety Data, Volume I~III", Sigma Chemical Company and Aldrich Chemical Company Inc. (1993).
- R. J. Lewis, "SAX's Dangerous Properties of Industrial Materials", 11th ed., John Wiley & Son, Inc., New Jersey (2004).
- V. Babrauskas, "Ignition Handbook", Fire Science Publishers, SFPE (2003).
- C. J. Hilado and S. W. Clark, "Autoignition Temperature of Organic Chemicals", Chemical Engineering, Vol. 4, pp. 75-80 (1972).
- A. M. Kanury, "SFPE Handbook of Fire Protection Engineering; Ignition of Liquid Fuels", 2nd ed., SFPE (1995).
- G. S. Scott, G. W. Jones and F. E. Scott, "Determination of Ignition Temperature of Combustible Liquids and Gases", Analytical Chemistry, Vol. 20, No. 3, pp. 238-241 (1948).
- M. G. Zabetakis, A. L. Furno and G. W. Jones, "Minimum Spontaneous Ignition Temperature of Combustibles in Air", Industrial and Engineering Chemistry, Vol. 46, No. 10, pp. 2173-2178 (1954).
- 17. D. R. Lide, "Handbook Chemistry and Physics", 76th ed., CRC Press (1996).
- J. A. Dean, "Lange's Handbook of Chemistry", 14th ed., McGraw Hill (1992).
- S. Yagyu, "Systematization of Spontaneous Ignition Temperatures of Organic Compounds (1st Report)", Research Report of the Research, Institute of Industrial Safety, RR-26-5, Japan (1978).