• 제목/요약/키워드: Big data model

검색결과 1,384건 처리시간 0.026초

빅데이터 역량 평가를 위한 참조모델 및 수준진단시스템 개발 (An Assessment System for Evaluating Big Data Capability Based on a Reference Model)

  • 천민경;백동현
    • 산업경영시스템학회지
    • /
    • 제39권2호
    • /
    • pp.54-63
    • /
    • 2016
  • As technology has developed and cost for data processing has reduced, big data market has grown bigger. Developed countries such as the United States have constantly invested in big data industry and achieved some remarkable results like improving advertisement effects and getting patents for customer service. Every company aims to achieve long-term survival and profit maximization, but it needs to establish a good strategy, considering current industrial conditions so that it can accomplish its goal in big data industry. However, since domestic big data industry is at its initial stage, local companies lack systematic method to establish competitive strategy. Therefore, this research aims to help local companies diagnose their big data capabilities through a reference model and big data capability assessment system. Big data reference model consists of five maturity levels such as Ad hoc, Repeatable, Defined, Managed and Optimizing and five key dimensions such as Organization, Resources, Infrastructure, People, and Analytics. Big data assessment system is planned based on the reference model's key factors. In the Organization area, there are 4 key diagnosis factors, big data leadership, big data strategy, analytical culture and data governance. In Resource area, there are 3 factors, data management, data integrity and data security/privacy. In Infrastructure area, there are 2 factors, big data platform and data management technology. In People area, there are 3 factors, training, big data skills and business-IT alignment. In Analytics area, there are 2 factors, data analysis and data visualization. These reference model and assessment system would be a useful guideline for local companies.

공간빅데이터 연구 동향 파악을 위한 토픽모형 분석 (Topic Model Analysis of Research Trend on Spatial Big Data)

  • 이원상;손소영
    • 대한산업공학회지
    • /
    • 제41권1호
    • /
    • pp.64-73
    • /
    • 2015
  • Recent emergence of spatial big data attracts the attention of various research groups. This paper analyzes the research trend on spatial big data by text mining the related Scopus DB. We apply topic model and network analysis to the extracted abstracts of articles related to spatial big data. It was observed that optics, astronomy, and computer science are the major areas of spatial big data analysis. The major topics discovered from the articles are related to mobile/cloud/smart service of spatial big data in urban setting. Trends of discovered topics are provided over periods along with the results of topic network. We expect that uncovered areas of spatial big data research can be further explored.

공공 빅데이터 플랫폼 성과평가 모형 (Performance Measurement Model for Open Big Data Platform)

  • 이규엽;박상철;류성열
    • 지식경영연구
    • /
    • 제21권4호
    • /
    • pp.243-263
    • /
    • 2020
  • 본 연구는 공공데이터 개방에 있어 공공데이터 제공자의 데이터 기여 측면과 공공데이터 사용자의 데이터 활용 측면을 고려하여 공공데이터 플랫폼 성과측정을 위한 프레임워크를 개발하였다. 본 연구는 NIST(2018)의 빅데이터 참조 아키텍처와 Neely et al.(2001)의 성과 프리즘을 기반으로 공공 빅데이터 플랫폼 성과평가 모형의 5개 영역을 제시하였다. 구체적으로, 공공데이터 플랫폼 성과평가 영역은 이해관계자 기여, 빅데이터 거버넌스 역량, 빅데이터 서비스 역량, 빅데이터 정보기술(IT) 역량, 그리고 이해관계자 만족으로 구성된다. 본 연구에서 제시한 공공 빅데이터 플랫폼 성과평가 모형의 5개 영역과 24개 평가지표에 대한 측정 문항은 총 75개 항목으로 구성되었다.

빅데이터 유통 생태계에 기반한 단계별 빅데이터 유통 모델 개발에 관한 연구 (A Study on the Development of Phased Big Data Distribution Model Based on Big Data Distribution Ecology)

  • 김신곤;이석준;김정곤
    • 디지털융복합연구
    • /
    • 제14권5호
    • /
    • pp.95-106
    • /
    • 2016
  • 본 연구는 빅데이터 유통 생태계에 기반한 단계별 빅데이터 유통 모델 개발 방안을 제안한다. 제안하는 빅데이터 유통모델의 개발은 데이터 중개 및 거래 플랫폼 구축, 거래지원 시스템 구축, 데이터 유통 포털 및 빅데이터 거래소 연결망 구축과 같이 3단계로 구성된다. 데이터 중개 및 거래 플랫폼 구축 단계에서는 데이터 유통 및 거래 플랫폼이 구축되며, 총괄시스템과 등록 및 거래관리 시스템으로 구성되며, 거래지원 시스템 구축 단계에서는 원활한 데이터 거래를 위한 거래지원 시스템이 추가적으로 구축된다. 마지막 데이터 유통 포털 및 빅데이터 거래소 연결망 구축 단계에서는 여러 거래소들의 통합에 필요한 유통 관리 시스템이 구축된다. 새로운 기술, 프로세스, 데이터 과학 등을 이용하여 과거의 데이터 관리 시스템을 빠르게 대체해 나가고 있는 현대의 데이터 시장에서 데이터 유통시장 모델은 계속 진화하고 있으며, 비즈니스 업계에서 수용되고 있다. 따라서 제안하는 빅데이터 유통 모델은 멀지 않은 장래에 데이터를 관리하고 접근하기 위한 산업표준 확립 시 고려될 수 있다고 사료된다.

Impact of Big Data Analytics on Indian E-Tailing from SCM to TCS

  • Avinash BM;Divakar GM;Rajasekhara Mouly Potluri;Megha B
    • 유통과학연구
    • /
    • 제22권8호
    • /
    • pp.65-76
    • /
    • 2024
  • Purpose: The study aims to recognize the relationship between big data analytics capabilities, big data analytics process, and perceived business performance from supply chain management to total customer satisfaction. Research design, data and methodology: The study followed a quantitative approach with a descriptive design. The data was collected from leading e-commerce companies in India using a structured questionnaire, and the data was coded and decoded using MS Excel, SPSS, and R language. It was further tested using Cronbach's alpha, KMO, and Bartlett's test for reliability and internal consistency. Results: The results showed that the big data analytics process acts as a robust mediator between big data analytics capabilities and perceived business performance. The 'direct, indirect and total effect of the model' and 'PLS-SEM model' showed that the big data analytics process directly impacts business performance. Conclusions: A complete indirect relationship exists between big data analytics capabilities and perceived business performance through the big data analytics process. The research contributesto e-commerce companies' understanding of the importance of big data analytics capabilities and processes.

빅데이터 시스템의 수용의도에 영향을 미치는 수용조직의 환경요인에 관한 연구 (A Study on the Effect of Organization's Environment on Acceptance Intention for Big Data System)

  • 김은영;이정훈;서동욱
    • Journal of Information Technology Applications and Management
    • /
    • 제20권4호
    • /
    • pp.1-18
    • /
    • 2013
  • Big data has become a worldwide topic. Despite this, big data accurately understand and acquire the business to take advantage of companies that were only very few. The purpose of this study is to investigate the factors that effect Korean firm's adopting big data system. Empirical test was conducted to verify hypotheses using extended technology acceptance model and we analyzed factors which affect the behavioral intention of big data System. Based upon previous researches, we have selected organization innovation, organization slank, organization information system infra maturity, perceived benefits of big data system, perceived usefulness, perceived ease of use, behavioral intention as variables and proposed a research model based on survey questionnaires. From those, we drew that perceived usefulness and perceived ease of use influenced the behavioral intention. The results of this study will increase the users' awareness on big data system and contribute to develop a way to enable the introduction of new technologies.

Five Forces Model of Computational Power: A Comprehensive Measure Method

  • Wu, Meixi;Guo, Liang;Yang, Xiaotong;Xie, Lina;Wang, Shaopeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2239-2256
    • /
    • 2022
  • In this paper, a model is proposed to comprehensively evaluate the computational power. The five forces model of computational power solves the problem that the measurement units of different indexes are not unified in the process of computational power evaluation. It combines the bidirectional projection method with TOPSIS method. This model is more scientific and effective in evaluating the comprehensive situation of computational power. Lastly, an example shows the validity and practicability of the model.

Business Intelligence and Marketing Insights in an Era of Big Data: The Q-sorting Approach

  • Kim, Ki Youn
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.567-582
    • /
    • 2014
  • The purpose of this study is to qualitatively identify the typologies and characteristics of the big data marketing strategy in major companies that are taking advantage of the big data business in Korea. Big data means piles accumulated from converging platforms such as computing infrastructures, smart devices, social networking and new media, and big data is also an analytic technique itself. Numerous enterprises have grown conscious that big data can be a most significant resource or capability since the issue of big data recently surfaced abruptly in Korea. Companies will be obliged to design their own implementing plans for big data marketing and to customize their own analytic skills in the new era of big data, which will fundamentally transform how businesses operate and how they engage with customers, suppliers, partners and employees. This research employed a Q-study, which is a methodology, model, and theory used in 'subjectivity' research to interpret professional panels' perceptions or opinions through in-depth interviews. This method includes a series of q-sorting analysis processes, proposing 40 stimuli statements (q-sample) compressed out of about 60 (q-population) and explaining the big data marketing model derived from in-depth interviews with 20 marketing managers who belong to major companies(q-sorters). As a result, this study makes fundamental contributions to proposing new findings and insights for small and medium-size enterprises (SMEs) and policy makers that need guidelines or direction for future big data business.

A Study on Deep Learning Model-based Object Classification for Big Data Environment

  • Kim, Jeong-Sig;Kim, Jinhong
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권1호
    • /
    • pp.59-66
    • /
    • 2021
  • Recently, conceptual information model is changing fast, and these changes are coming about as a result of individual tendency, social cultural, new circumstances and societal shifts within big data environment. Despite the data is growing more and more, now is the time to commit ourselves to the development of renewable, invaluable information of social/live commerce. Because we have problems with various insoluble data, we propose about deep learning prediction model-based object classification in social commerce of big data environment. Accordingly, it is an increased need of social commerce platform capable of handling high volumes of multiple items by users. Consequently, responding to rapid changes in users is a very significant by deep learning. Namely, promptly meet the needs of the times, and a widespread growth in big data environment with the goal of realizing in this paper.

4차 산업혁명 시대에 적합한 빅데이터 대학 교육과정 연구 (Research on big data curriculum in university suitable for the era of the 4th industrial revolution)

  • Choi, Hun;Kim, Gimun
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1562-1565
    • /
    • 2020
  • With the development of digital technology, the industrial structure is becoming digitalize. The government selected big data as the key technology of the 4th industrial revolution. Among them, big data is widely used to create new values and services by utilizing vast amounts of information. In order to cultivate professional manpower for the use of big data, various education programs are provided at universities. We intend to develop a curriculum for systematic training of talented people who can acquire knowledge about the three stages of collection, analysis, and application of big data. To this end, subjects are classified into basic competency, technical competency, analysis competency, and business competency based on the big data competency model proposed by the Korea Internet & Security Agency.