International journal of advanced smart convergence
/
v.11
no.3
/
pp.79-84
/
2022
Due to a series of online sex crimes cases and online class conversions caused by the spread of the coronavirus, alternatives to sex education in schools are urgently required. As a result of this study, the metaverse sex education platform was designed. Using this platform, learners are expected to cultivate correct adult awareness and digital citizenship. Within the metaverse platform, learners can participate more actively in learning. Instead of exposing one's name and face in a place dealing with sensitive gender issues, one can participate in education through his or her decorated avatar and participate in education much more actively than face-to-face education and express one's opinion through chat. In addition, education by level can be received regardless of time and place, which can have the effect of bridging the educational gap between urban and rural areas. In this paper, we propose a new sex education platform without time and space constraints by utilizing metaverse.
This study is aimed at a comparison analyzing the contents of child 'safety education' in Three-four-year-old Nuri curriculum manual for teachers related activity type and activity form, life theme based on the criteria of analysis. First, the number of contents of child 'safety education' included in the 3 year old Nuri curriculum manual for teachers was 136, and among them, 71(52.2%) were from in big and small group activity. Total 124 contents were in 4-year old group and showed 58(46.8%) contents in big and small group activity. Second, it was identified that the Three-four-year-old Nuri curriculum handled highest number of child 'safety education' activities. Twenty-five activities from 'appliances' among a total of 127 child 'safety education' activities were included and included 21 activities in contents of 'safety for object, tool, and apparatus.' Thirty-three activities among 'health and safety' among a total of 131 child 'safety education' activities were included and it was identified that the highest number of child 'safety education' activities were conducted in 'safety for disease' contents. It will be hope to suggest some of the providing child 'safety education' of Three-four-year-old in education field, and to provide basic data for planning and suggesting directions for various training related to child safety education. Moreover, this study intends to provide basic data for composing necessary manual and program for child 'safety education' and to provide basic data for expanding the safety experience facility.
Journal of The Korean Association of Information Education
/
v.26
no.1
/
pp.45-53
/
2022
The need for artificial intelligence education has emerged, and countries around the world are announcing artificial intelligence strategies. Artificial intelligence education is reflected in the main points of the 2022 revised curriculum general published in Korea. Along with this interest, programs related to artificial intelligence education are being developed, but it is difficult to find artificial intelligence programs for lower grades of elementary school. This study aims to develop a data collection education program for the lower grades of elementary school through a series of analysis-design-development-application-evaluation processes and apply it to first-grade elementary school students to verify its effectiveness. Through the developed program, it is expected that students will be able to understand and feel interested in artificial intelligence, and develop an attitude of collecting data in their daily lives through the process of searching for various types of data in their daily lives.
Proceedings of the Korean Society of Computer Information Conference
/
2017.01a
/
pp.223-224
/
2017
한 보고서에 따르면, 경제가 불황이라도 먹거리에 대한 인간의 욕구 때문에 식품산업은 그 범위와 규모가 다양한 형태로 확장되고 있다. 특히, 글로벌 살아가는 현대에서는 식품에 대한 종류와 식자재 수급에 대한 국경은 이미 사라진 상태이다. 이러한 현실에서의 식자재는 환율, 기상기후, 농축수산물의 거래량 등에 따라 수요와 가격이 불규칙적으로 변화하고 있다. 본 논문에서는 이러한 데이터들을 수집하고 분석하여 식품 수요에 따른 식자재에 대한 관련 정보를 사이니지 형태로 제공하는 서비스를 제안한다.
Purpose The purpose of this study is to identify features of Gapjil and platform tyranny through South Korea's Gapjil and platform tyranny cases and to suggest countermeasures to both kinds of cases and follow-up study subjects. Methodology/approach We examined South Korea's Gapjil and platform tyranny cases by using Big Data analytics. Then we made a close examination of the two typical cases, through which we compared features and countermeasures of Gapjil and those of platform tyranny. Findings Gapjil mostly occurred at conventional companies and franchise companies, between major and minor companies, or due to lack of owner's qualifications. The features of platform tyranny were excessively monopolistic structure of platform business, inadequate legal sanctions, and features of ICT companies. Establishment of legal bases for sanctions and education for platform participants were suggested as countermeasures.
Big data processing technology and artificial intelligence (AI) are increasingly attracting attention. Natural language processing is an important research area of artificial intelligence. In this paper, we use Korean news articles to extract topic distributions in documents and word distribution vectors in topics through LDA-based Topic Modeling. Then, we use Word2vec to vector words, and generate a weight matrix to derive the relevance SCORE considering the semantic relationship between the words. We propose a way to recommend documents in order of high score.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.351-354
/
2022
본 연구는 최근 2022년 6월 1일에 실시된 전국 시도교육청 교육감 선거를 계기로 진행된 연구이다. 본 연구의 목적은 2010년 1월 1일부터 2022년 6월 10일까지 '교육감 직선제'를 다룬 언론사 기사들을 분석하여 그 결과를 객관적으로 제시하는 것이다. 분석 대상은 2010년 1월 1일부터 2022년 6월 10일까지 기간을 설정한 후, '교육감'과 '직선제' 2개의 용어가 모두 포함된 국내 54개 주요 언론사 뉴스 기사들(5,610건)이다. 본 연구에서는 뉴스 빅데이터 분석시스템인 빅카인즈(BIGKinds) 서비스를 적극적으로 이용하여 뉴스 트렌드 분석, 네트워크(관계도) 분석, 연관어 분석 등을 진행하였다. 본 연구자료는 관련 학문 연구자와 교육 현장 종사자들에게 시사점을 줄 수 객관적인 자료로 활용될 것이다. 본 연구는 향후 지방교육자치와 교육감 선거의 발전적 모델 탐색을 위한 다양한 연구 과정으로 확대 전개하고자 한다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.2
/
pp.25-40
/
2019
Many companies are executing big data analysis and utilization projects to legitimize the development of new business areas or conversion of management or technical strategies. In Korea and abroad, however, such projects are failing because they are not completed within specified deadlines, which is not unrelated to the current situation in which the knowledge base for big data project risk management from an engineering perspective is grossly lacking. As such, the current study analyzes the risk factors of big data implementation and utilization projects, in addition to finding risk factors that are highly important. To achieve this end, the study extracts project risk factors via literature review, after which they are grouped using affinity methodology and sifted through expert surveys. The deduced risk factors are structuralize using factor analysis to develop a table that categorizes various types of big data project risk factors. The current study is significant that in it provides a basis for developing basic control indicators related to risk identification, risk assessment, and risk analysis. The findings from the study contribute greatly to the success of big data projects, by providing theoretical basis regarding efficient big data project risk management.
Journal of the Korea Society of Computer and Information
/
v.25
no.9
/
pp.37-44
/
2020
AI technology has developed in the form of decision support technology in law, patent, finance and national defense and is applied to disease diagnosis and legal judgment. To search real-time information with Deep Learning, Big data Analysis and Deep Learning Algorithm are required. In this paper, we try to predict the entrance rate to high-ranking universities using a Deep Learning model, RNN(Recurrent Neural Network). First, we analyzed the current status of private academies in administrative districts and the number of students by age in administrative districts, and established a socially accepted hypothesis that students residing in areas with a high educational fever have a high rate of enrollment in high-ranking universities. This is to verify based on the data analyzed using the predicted hypothesis and the government's public data. The predictive model uses data from 2015 to 2017 to learn to predict the top enrollment rate, and the trained model predicts the top enrollment rate in 2018. A prediction experiment was performed using RNN, a Deep Learning model, for the high-ranking enrollment rate in the special education zone. In this paper, we define the correlation between the high-ranking enrollment rate by analyzing the household income and the participation rate of private education about the current status of private institutes in regions with high education fever and the effect on the number of students by age.
Much of our lives are closely related to artificial intelligence, and society is changing more rapidly. Reflecting this era, the need for artificial intelligence education has emerged and various learning methods have been proposed, but guidance on artificial intelligence teaching and learning activities for lower grades elementary school students is insufficient. Therefore, in this study, the data collection education program for the lower grades of elementary school was developed based on the contents standards of the Korea Foundation for the Advancement of Science & Creativity. Focusing on the principles of artificial intelligence and the detailed data area of the utilization area, the focus was on expressing numbers and letters in various ways, such as colors and pictures, and finding various types of data in life to learn the principles of artificial intelligence. Through this program, it is expected that lower-grade elementary school students will be able to understand the importance of data collection in artificial intelligence through the process of knowing about data and collecting sound, picture, and text data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.