• 제목/요약/키워드: Bifurcation problems

검색결과 24건 처리시간 0.023초

BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS

  • Abid, Imed
    • 대한수학회지
    • /
    • 제57권6호
    • /
    • pp.1347-1372
    • /
    • 2020
  • We study bifurcation for the following fractional Schrödinger equation $$\{\left.\begin{eqnarray}(-{\Delta})^su+V(x)u&=&{\lambda}f(u)&&{\text{in}}\;{\Omega}\\u&>&0&&{\text{in}}\;{\Omega}\\u&=&0&&{\hspace{32}}{\text{in}}\;{\mathbb{R}}^n{\backslash}{\Omega}\end{eqnarray}\right$$ where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of ℝn, (-∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is $\lim_{t{\rightarrow}+{\infty}}\;{\frac{f(t)}{t}}=a{\in}(0,+{\infty})$. We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.

고무풍선의 일반화 팽창 및 분기 해석 (General inflation and bifurcation analysis of rubber balloons)

  • 박문식
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.14-24
    • /
    • 2018
  • 몇 가지 전형적인 기존 및 진보된 초탄성 구성모델들의 고무패치 이축인장 및 구형 또는 원통형 풍선 팽창에서의 불안정성에 대해서 밝힌다. 적용할 구성모델은 neo-Hookean 모델, Mooney-Rivlin 모델, Gent 모델, Arruda-Boyce 모델, Fung 모델, Pucci-Saccomandi 모델 등이다. 팽창 및 분기 해석은 이들 변형에너지 함수들의 막 방정식을 이용하여 수행할 수 있다. 해석에는 사각패치에 대한 Kearsley의 분기현상, 고무풍선의 일반화 한 팽창현상, 고무풍선의 분기현상을 다룬다. 이들 변형에너지 함수들 중에서도 오직 Mooney-Rivlin 모델에서만 Kearsley의 분기현상이 일어남을 확인하였다. 팽창 방정식은 구형풍선과 원통형 풍선을 함께 다룰 수 있도록 일반화 시켰다. 팽창해석에 의하여 극한점과 임계 물성치들을 무차원 압력 및 팽창 부피의 항들로 구하였다. 그렇게 구해진 결과들로부터 분기현상을 구할 수 있었다. 또한 유한요소법을 사용하여 고무류의 구조적 불안정 문제들을 다룰 때 필요한 특별한 조처에 대해서 제안하였다. 결론적으로 고무류의 불안정성을 포함하는 문제를 다룰 때는 해석기법은 물론 구성모델의 선택에 따라 결과가 달라질 수 있으므로 신중한 처리가 요구된다.

NODAL SOLUTIONS FOR AN ELLIPTIC EQUATION IN AN ANNULUS WITHOUT THE SIGNUM CONDITION

  • Chen, Tianlan;Lu, Yanqiong;Ma, Ruyun
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.331-343
    • /
    • 2020
  • This paper is concerned with the global behavior of components of radial nodal solutions of semilinear elliptic problems -Δv = λh(x, v) in Ω, v = 0 on ∂Ω, where Ω = {x ∈ RN : r1 < |x| < r2} with 0 < r1 < r2, N ≥ 2. The nonlinear term is continuous and satisfies h(x, 0) = h(x, s1(x)) = h(x, s2(x)) = 0 for suitable positive, concave function s1 and negative, convex function s2, as well as sh(x, s) > 0 for s ∈ ℝ \ {0, s1(x), s2(x)}. Moreover, we give the intervals for the parameter λ which ensure the existence and multiplicity of radial nodal solutions for the above problem. For this, we use global bifurcation techniques to prove our main results.

얇은 보 구조물의 횡좌굴에 대한 total lagrangian 유한요소해석 (Total Lagrangian Finite Element Analysis of Lateral Buckling for Thin Beam Structures)

  • 정동원
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.7-22
    • /
    • 1997
  • A finite element analysis is performed for lateral buckling problems on the basis of a geometrically nonlinear formulation for a beam with small elastic strain but with possibly large rotations. The total Lagrangian formulation for a general large deformation, which involves finite rotations, is chosen and the exponential map is used to treat finite rotations from the Eulerian point of view. For lateral buckling, the point of vanishing determinant of the resulting unsymmetric tangent stiffness is traced to examine its relationship to bifurcation points. It is found that the points of vanishing determinant is not corresponding to bifurcation points for large deformations in general, which suggests that the present unsymmetric tangent stiffness is not an exact first derivative of internal forces with respect to displacement. This is illustrated through several numerical examples and followed by appropriate discussion.

  • PDF

래티스 돔의 다분기 해석을 위한 알고리즘에 관한 연구 (A Study on the Algorithm for Multiple Bifurcation of Lattice Domes)

  • 윤한흠;이갑수;한상을
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.395-402
    • /
    • 1999
  • This paper discusses the theoretical researches subject to elastic buckling problems of the structures. The purpose is to ensure the characteristic of buckling be true by arc-length method and the finite element method. The difficulties in processes calculating the equilibrium curve after buckling is to get the equilibrium owe near singular point at which the determinant of stiffness matrix is zero. The purpose of the load-displacement curve is to determine the buckling load of the structure, and further to get the information about the characteristic after buckling. Here, this paper expresses the incremental solution at particular point by the linear combination of both homogeneous mode and particular mode, then uses the method which gets the unknown parameter including this function, through trial-and-error method including modified N-R convergence process. Finally, this paper describes the multiple bifurcation of truss dome as the numerical examples according to this algorithm.

  • PDF

래티스돔의 안정문제에 관한 연구 (A Study on the Stability Problems of the Latticed Domes)

  • 한상을
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.9-18
    • /
    • 1996
  • The primary objective of this paper is to grasp many characteristics of buckling behavior of latticed spherical domes under various conditions. The Arc-Length Method proposed by E.Riks is used for the computation and evaluation of geometrically nonlinear fundamental equilibrium paths and bifurcation points. And the direction of the path after the bifurcation point is decided by means of Hosono's concept. Three different nonlinear stiffness matrices of the Slope-Deflection Method are derived for the system with rigid nodes and results of the numerical analysis are examined in regard in geometrical parameters such as slenderness ratio, half-open angle, boundary conditions, and various loading types. But in case of analytical model 2 (rigid node), the post-buckling path could not be surveyed because of Newton-Raphson iteration process being diversed on the critical point since many eigenvalues become zero simultaneously.

  • PDF

STABILITY OF POSITIVE STEADY-STATE SOLUTIONS IN A DELAYED LOTKA-VOLTERRA DIFFUSION SYSTEM

  • Yan, Xiang-Ping;Zhang, Cun-Hua
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.715-731
    • /
    • 2012
  • This paper considers the stability of positive steady-state solutions bifurcating from the trivial solution in a delayed Lotka-Volterra two-species predator-prey diffusion system with a discrete delay and subject to the homogeneous Dirichlet boundary conditions on a general bounded open spatial domain with smooth boundary. The existence, uniqueness and asymptotic expressions of small positive steady-sate solutions bifurcating from the trivial solution are given by using the implicit function theorem. By regarding the time delay as the bifurcation parameter and analyzing in detail the eigenvalue problems of system at the positive steady-state solutions, the asymptotic stability of bifurcating steady-state solutions is studied. It is demonstrated that the bifurcating steady-state solutions are asymptotically stable when the delay is less than a certain critical value and is unstable when the delay is greater than this critical value and the system under consideration can undergo a Hopf bifurcation at the bifurcating steady-state solutions when the delay crosses through a sequence of critical values.

위성영상과 지리정보시스템을 이용한 라오스 루앙프라방 지역의 화전지역 분석 (An Analysis of Shifting Cultivation Areas in Luang Prabang Province, Lao PDR, Using Satellite Imagery and Geographic Information Systems)

  • 조명희
    • 대한원격탐사학회지
    • /
    • 제10권1호
    • /
    • pp.43-53
    • /
    • 1994
  • 삼림을 베어서 태우고 난 직 후의 라오스 북부 화전지역의 MOS-1 위성영상을 처리하여 유역분지 단위로 화전지역의 면적을 산출하였으며, 지형도상에서 얻어낸 하계망과의 상관관계를 분석하기 위하여 PC Arc - Info의 GIS software를 이용하였다. 그 결과 화전의 분포비율이 높은 유역분지에서는 1차수하천의 분기율도 높게 나타남을 알수 있으며, 라오스에 있어서 화전이 지표 의 침식과 토지의 황폐화를 초래하여 여러가지 환경문제를 유발시키는 원인이 된다는 것이 규명 되었다.