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STABILITY OF POSITIVE STEADY-STATE SOLUTIONS IN

A DELAYED LOTKA-VOLTERRA DIFFUSION SYSTEM

Xiang-Ping Yan and Cun-Hua Zhang

Abstract. This paper considers the stability of positive steady-state so-
lutions bifurcating from the trivial solution in a delayed Lotka-Volterra
two-species predator-prey diffusion system with a discrete delay and sub-

ject to the homogeneous Dirichlet boundary conditions on a general boun-
ded open spatial domain with smooth boundary. The existence, unique-
ness and asymptotic expressions of small positive steady-sate solutions

bifurcating from the trivial solution are given by using the implicit func-
tion theorem. By regarding the time delay as the bifurcation parameter
and analyzing in detail the eigenvalue problems of system at the positive
steady-state solutions, the asymptotic stability of bifurcating steady-state

solutions is studied. It is demonstrated that the bifurcating steady-state
solutions are asymptotically stable when the delay is less than a certain
critical value and is unstable when the delay is greater than this critical
value and the system under consideration can undergo a Hopf bifurcation

at the bifurcating steady-state solutions when the delay crosses through
a sequence of critical values.

1. Introduction

This paper is concerned with the following coupled delayed reaction-diffusion
system describing the predator-prey relation of Lotka-Volterra type between
two species
(1.1)

∂u(x,t)
∂t = d1∆u(x, t) + u(x, t)[r1 − a11u(x, t− τ)− a12v(x, t− τ)], x ∈ Ω, t > 0,

∂v(x,t)
∂t = d2∆v(x, t) + v(x, t)[r2 + a21u(x, t− τ)− a22v(x, t− τ)], x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
u(x, t) = u0(x, t), v(x, t) = v0(x, t), (x, t) ∈ Ω× [−τ, 0],

where u(x, t) and v(x, t) designate the population densities for a cooperation
species and a competition species at time t and space location x, respectively;
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the constants di > 0(i = 1, 2) represent the diffusion coefficients for two species,
respectively, and the positive constants ri(i = 1, 2) are the intrinsic growth rates
of two species in the absence of the other species; τ ≥ 0 is the time delay and
aij(i, j = 1, 2) are all positive constants; ∆ stands for Laplacian operator and
Ω is a bounded open domain in Rn(n ≥ 1) with smooth boundary ∂Ω; homo-
geneous Dirichlet boundary conditions imply that the exterior environment is
hostile and the initial functions u0(x, t), v0(x, t) ∈ C := C([−τ, 0], L2(Ω)).

System (1.1) with Neumann boundary conditions has been extensively stud-
ied by many authors and many interesting results have been also obtained
(see [7, 15] and the references therein). For example, Kuang and Smith [7]
investigated the global stability of the positive constant equilibrium solution
of (1.1) under Neumann boundary conditions and they found that small delay
cannot destabilize the positive constant equilibrium solution. Recently, by re-
garding the delay τ as the bifurcation parameter and analyzing the associated
characteristic equation, Yan [15] gave an accurate stability criterion for (1.1)
with the homogeneous Neumann boundary conditions on domain (0, π) and
found that in this case the positive constant steady-state solution of (1.1) is
asymptotically stable when the delay τ is less than a certain critical value and
is unstable when τ is greater than this critical value. In addition, Yan [15]
also showed that the system (1.1) with the homogeneous Neumann boundary
conditions on (0, π) can undergo a Hopf bifurcation at the positive constant
steady-state solution when τ crosses through a sequence of critical values. For
the general theory of reaction-diffusion equations with delays, we refer to [14].

As pointed out by Huang [5], however, the homogeneous Dirichlet bound-
ary conditions imply that the nontrivial steady-state solutions and periodic
solutions (if they exist) are spatially nonconstant. Hence, under the Dirichlet
boundary conditions, it is very difficult to study the stability of nonconstant
steady-state solutions because in this case the analysis of the characteristic
equation is very difficult [1, 8, 16, 19]. The main goal of this paper is to study
the stability of the bifurcating positive steady-state solutions of system (1.1).
To this end, make the change of variables ū = a11

r1
u, v̄ = a22

r2
v and let a = r2a12

r1a22
,

b = r1a21

r2a11
. Then after dropping the bars system (1.1) can be rewritten into the

following system

(1.2)
∂u(x,t)

∂t = d1∆u(x, t) + r1u(x, t)[1− u(x, t− τ)− av(x, t− τ)], x ∈ Ω, t > 0,
∂v(x,t)

∂t = d2∆v(x, t) + r2v(x, t)[1 + bu(x, t− τ)− v(x, t− τ)], x ∈ Ω, t > 0,
u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
u(x, t) = u0(x, t), v(x, 0) = v0(x), (x, t) ∈ Ω× [−τ, 0].

Let λ1 denote the principal eigenvalue of −∆ on Ω with homogeneous Dirichlet
boundary conditions. From [3,17] we know that λ1 > 0 and the corresponding
eigenfunction ϕ1 is also positive in Ω. Define r∗1 = d1λ1, r

∗
2 = d2λ1 and assume

that r1 − r∗1 = r2 − r∗2 := r. Then the main results in the present paper can be
summarized as follows:
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(i) If a < d2

d1
and ad1(d1+bd2)

bd2(d2−ad1)
̸= 1, then the system (1.2) can bifurcate

a small positive steady-state solution (ur, vr) from the trivial solution
when 0 < r ≪ 1.

(ii) If a < d2

d1
, ad1(d1+bd2)

bd2(d2−ad1)
̸= 1 and 0 < r ≪ 1, then there exists a positive

constant τ0 such that (ur, vr) is asymptotically stable when τ ∈ [0, τ0)
and is unstable when τ ∈ (τ0,∞). In addition, there exists a sequence of
values {τn}∞n=0 such that the system (1.2) undergoes a Hopf bifurcation
at (ur, vr) when τ = τn.

The remainder of this paper is organized as follows. In Section 2, we give
the existence, uniqueness and asymptotic expressions of positive steady-state
solution (ur, vr) of the system (1.2) bifurcating from the trivial solution when
0 < r ≪ 1. In Section 3, the eigenvalue problems of (1.2) at the positive steady-
state solution (ur, vr) is analyzed in detail and the sufficient conditions under
which the characteristic equation has a pair of conjugate purely imaginary
roots are obtained. In Section 4, by regarding τ as the parameter and checking
the transversality conditions, the stability of (ur, vr) and the existence of Hopf
bifurcations at (ur, vr) are obtained.

2. Positive steady-state solutions bifurcating from trivial one

In this section, we give the existence, uniqueness and asymptotic expressions
of positive steady-state solutions of the system (1.2) bifurcating from the trivial
solution when 0 < r ≪ 1 by applying the implicit function theorem. From
[9,11,12], we know that the system (1.2) has no positive steady-state solutions
when r < 0, and thus we shall always suppose that 0 < r ≪ 1 and only
consider the positive steady-state solutions bifurcating from the zero solution
rather than the ones bifurcating from the other steady-state solutions such as
semi-trivial steady-state solutions.

Suppose that (ur, vr) is the positive steady-state solution of (1.2) when 0 <
r ≪ 1. Then (ur, vr) should be a solution of the following elliptic boundary
value problem

(2.1)


d1∆u+ r1u(1− u− av) = 0, x ∈ Ω,
d2∆v + r2v(1 + bu− v) = 0, x ∈ Ω,
u = v = 0, x ∈ ∂Ω,
u, v > 0, x ∈ Ω.

Define the operator D by

D =

(
d1∆+ r∗1 0

0 d2∆+ r∗2

)
,

and let N (D) and R(D) denote the null space and the range of D, respectively.
Then it is easy to see

N (D) = Span{η1, η2},



718 XIANG-PING YAN AND CUN-HUA ZHANG

R(D) =

{
y = (y1, y2)

T ∈ L2(Ω)× L2(Ω) : ⟨ηi, y⟩
def
=

∫
Ω

yi(x)ϕ1(x)dx = 0, i = 1, 2

}
and X = L2(Ω)× L2(Ω) can be decomposed as

X = N (D)⊕ R(D),

where η1 = (ϕ1, 0)
T and η2 = (0, ϕ1)

T .
Suppose that a < d2

d1
and let α0 and β0 be defined by

α0 =
d2 − ad1

d1d2λ1(1 + ab)
c∗, β0 =

d1 + bd2
d1d2λ1(1 + ab)

c∗,

where c∗ =
∫
Ω
ϕ2
1(x)dx∫

Ω
ϕ3
1(x)dx

> 0. Then α0 > 0 and β0 > 0. We consider the following

boundary value problem in X ∩ R(D):

(2.2)

 (d1∆+ r∗1)ξ + ϕ1 − r∗1 (α0 + aβ0)ϕ
2
1 = 0, x ∈ Ω,

(d2∆+ r∗2) η + ϕ1 + r∗2 (bα0 − β0)ϕ
2
1 = 0, x ∈ Ω,

ξ = η = 0, x ∈ ∂Ω.

From the definition of α0 and β0, and notice that D is a bijective mapping from
X ∩ R(D) to R(D), we can obtain easily the following result:

Lemma 2.1. The boundary value problem (2.2) has a unique solution (ξ0(x),
η0(x)) in Y ∩ R(D), where Y = H2

0 (Ω)×H2
0 (Ω) and

H2
0 (Ω) = {y ∈ L2(Ω) : ẏ, ÿ ∈ L2(Ω), y = 0 on ∂Ω}.

Theorem 2.2. If a < d2

d1
, then there exist a constant r∗ > 0 and a unique

continuous differential mapping r → (ξr, ηr, αr, βr) from [0, r∗] to (X∩R(D))×
(R+)2 such that the system (1.2) has a unique positive steady-state solution

ur = αrr(ϕ1 + rξr), vr = βrr(ϕ1 + rηr), r ∈ [0, r∗],(2.3)

and
⟨ϕ1, ξr⟩ = ⟨ϕ1, ηr⟩ = 0.

Proof. Let F = (F1, F2, F3, F4) : Y × R3 → X × R2 be defined by

F1(ξ, η, α, β, r) = (d1∆+ r∗1)ξ + ϕ1 + rξ

− (r∗1 + r)(ϕ1 + rξ)[α(ϕ1 + rξ) + aβ(ϕ1 + rη)],

F2(ξ, η, α, β, r) = (d2∆+ r∗2)η + ϕ1 + rη

+ (r∗2 + r)(ϕ1 + rη)[bα(ϕ1 + rξ)− β(ϕ1 + rη)],

F3(ξ, η, α, β, r) = ⟨ϕ1, ξ⟩,
F4(ξ, η, α, β, r) = ⟨ϕ1, η⟩.

Then

F (ξ0, η0, α0, β0, 0) =


(d1∆+ r∗1) ξ0 + ϕ1 − r∗1 (α0 + aβ0)ϕ

2
1

(d2∆+ r∗2) η0 + ϕ1 + r∗2 (bα0 − β0)ϕ
2
1

⟨ϕ1, ξ0⟩
⟨ϕ1, η0⟩

 = 0,
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and from [18] we know that the Frechét derivative of F at (ξ0, η0, α0, β0, 0) is

D(ξ,η,α,β)F (ξ0, η0, α0, β0, 0)

=


d1∆+ r∗1 0 −r∗1α0ϕ

2
1 −r∗1aβ0ϕ

2
1

0 d2∆+ r∗2 r∗2bα0ϕ
2
1 −r∗2β0ϕ

2
1

⟨ϕ1, ·⟩ 0 0 0
0 ⟨ϕ1, ·⟩ 0 0

 .

Notice that ϕ2
1(x) ̸∈ R(d1∆+ r∗1) ∩ R(d2∆+ r∗2). Therefore,

D(ξ,η,α,β)F (ξ0, η0, α0, β0, 0)

is a bijective mapping from Y ×R2 to X×R2. Thus, it follows from the implicit
function theorem [2, 6, 18] that there exist r∗ > 0 and a unique continuous
differential mapping r → (ξr, ηr, αr, βr) from [0, r∗] to (Y ∩ R(D)) × R2 such
that

F (ξr, ηr, αr, βr, r) ≡ 0, r ∈ [0, r∗].

An easy calculation shows that (ur, vr) given by (2.3) solves the boundary value
problem (2.1) and this completes the proof. □

3. Eigenvalue problems

In this section, we study the eigenvalue problem of the system (1.2) at the
positive steady-state solution (ur, vr) given by (2.3) when 0 < r ≪ 1.

Let 0 < r ≪ 1 and (ur, vr) be the positive steady-state solution of system
(1.2) given by (2.3). Define the operator A(r) : D(A(r)) → X with domain
D(A(r)) = Y by

A(r) =

(
d1∆+ (r∗1 + r)(1− ur − avr) 0

0 d2∆+ (r∗2 + r)(1 + bur − vr)

)
.

From [10] we know that A(r) is an infinitesimal generator of a strong continuous
semigroup and A(r) is also a self-adjoint operator. Set

V (t) = (u(t), v(t))T = (u(·, t), v(·, t))T , Φ̂(t) = (ū0(t), v̄0(t))

= (u0(·, t)− ur(·), v0(·, t)− vr(·)),
and let

B(r) =

(
−(r∗1 + r)ur −a(r∗1 + r)ur

b(r∗2 + r)vr −(r∗2 + r)vr

)
.

Then the linearization of system (1.2) at the positive steady-state solution
(ur, vr) is given by

(3.1)


dV (t)

dt
= A(r)V (t) +B(r)V (t− τ), t > 0,

V (t) = Φ̂(t), t ∈ [−τ, 0],

and the characteristic equation resulting from the linear system (3.1) is

(3.2) ∆(r, λ, τ)(y, z)T = 0, 0 ̸= (y, z) ∈ D(A(r)),
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where

∆(r, λ, τ) = A(r)− λI2 +B(r)e−λτ ,

and I2 is the second order identity matrix. It is well known that (ur, vr) is
asymptotically stable if all the roots λ of (3.2) are in the left-half complex
plane and (ur, vr) is unstable if (3.2) has at least a root λ in the right-half
complex plane. In addition, from [4, 10, 13, 14] we know that the infinitesimal
generator of the semi-group induced by the solutions of the linear system (3.1)
is given by

Aτ (r)φ = φ̇(θ), −τ ≤ θ ≤ 0,

with

D(Aτ (r)) = {φ ∈ C1 : φ(0) ∈ Y, φ̇(0) = A(r)φ(0) +B(r)φ(−τ)},

where C1 := C1([−τ, 0], X), and the spectra of Aτ (r) are all point spectra.
Therefore, the study of the stability of (ur, vr) is equivalent to the study of the
point spectrum of Aτ (r). We first analyze the point spectrum of Aτ (r) when
τ = 0.

If we ignore a scalar factor, then for r ∈ (0, r∗] the solution (y, z) of the
eigenvalue problem (3.2) can be represented as

y = ϕ1 + rγ, ⟨ϕ1, γ⟩ = 0,

z = cϕ1 + rδ, ⟨ϕ1, δ⟩ = 0,
(3.3)

where c is a complex number.

Lemma 3.1. If a < d2

d1
and 0 < r∗ ≪ 1, then the bifurcating steady-state

solution (ur, vr) of the system (1.2) with τ = 0 is asymptotically stable for
r ∈ [0, r∗].

Proof. When τ = 0, the eigenvalue problem (3.2) reduces to

(3.4)

{
[d1∆+ (r∗1 + r)(1− 2ur − avr)] y − a(r∗1 + r)urz = λy,
−b(r∗2 + r)vry + [d2∆+ (r∗2 + r)(1 + bur − 2vr)] z = λz,

with 0 ̸= (y, z) ∈ Y . From Theorem 2.2 and (3.3), we have

ur = αrrϕ1 +O(r2), vr = βrrϕ1 +O(r2),

y = ϕ1 +O(r), z = crϕ1 +O(r),

where cr is a complex number satisfying cr → c0 as r → 0. Therefore, after
multiplying both sides of the first equation of (3.4) by ϕ1(x) and integrating
on Ω, we can get that

(λ− r)

∫
Ω

ϕ2
1(x)dx = −r(r∗1 + r)(2αr + aβr + aαrcr)

∫
Ω

ϕ3
1(x)dx+O(r2).

Let λ = λ
r c∗. Then the above equality can be rewritten as

(3.5) λ− c∗ = −(r∗1 + r)(2αr + aβr + aαrcr) +O(r).
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Noting that

r∗1(α0 + aβ0) = c∗,

and αr → α0, βr → β0, cr → c0 as r → 0, hence, (3.5) can be further rewritten
as

(3.6) λ = −r∗1(α0 + aα0c0) +O(r).

Similarly, from the fact that

r∗2(bα0 − β0) = −c∗,

and the second equation of (3.4), we can obtain

(3.7) λc0 = r∗2(bβ0 − β0c0) +O(r).

Solving p0 from (3.7), one can obtain

c0 =
r∗2bβ0

λ+ r∗2β0

+O(r).

Substituting p0 into (3.6) gives that

λ
2
+ (r∗1α0 + r∗2β0)λ+ r∗1r

∗
2(1 + ab)α0β0 +O(r) = 0.

Obviously, Reλ < 0 and thus the proof is complete. □

From the continuous dependence of roots of (3.2) on τ [2,14], we know that
the values of τ for which (3.2) has a pair of purely imaginary roots will play
a key role in the analysis of the bifurcation of periodic solutions. In fact, for
some τ > 0, (3.2) has a purely imaginary eigenvalue λ = iv(v > 0) if and only
if

(3.8)
[
A(r)− ivI2 +B(r)e−iθ

]
(y, z)T = 0,

where 0 ̸= (y, z) ∈ Y , is solvable for some value of v > 0, θ ∈ (0, 2π]. In
addition, if we find a pair of (v, θ) ∈ R+ × (0, 2π] such that (3.8) has a solution
0 ̸= (y, z) ∈ Y , then it is easy to see that

∆(r, iv, τn)(y, z)
T = 0, τn =

θ + 2nπ

v
, n = 0, 1, 2, . . . ,

and hence τn will possibly be the candidates at which the stability of ur changes
and the Hopf bifurcations occur. Therefore, an important question is that
there are how many pairs (v, θ) ∈ R+ × (0, 2π] such that (3.8) is solvable.
In the following, we shall demonstrate that there is a unique pair of (v, θ) ∈
R+ × (0, 2π] which solves (3.8).

Lemma 3.2. If a < d2

d1
, 0 < r∗ ≪ 1 and (v, θ, y, z) solves the equation (3.8)

with v > 0, θ ∈ (0, 2π] and 0 ̸= (y, z) ∈ Y , then v
r is uniformly bounded for

r ∈ (0, r∗].
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Proof. Since (v, θ, y, z) solves the equation (3.8), it follows from (3.8) that⟨[
d1∆+(r∗1 + r)(1− ur − avr)−iv−(r∗1 + r)ure

−iθ
]
y−a(r∗1 + r)ure

−iθz, y
⟩

+
⟨
b(r∗2+r)vre

−iθy+
[
d2∆+(r∗2+r)(1+bur−vr)−iv−(r∗2+r)vre

−iθ
]
z, z

⟩
= 0.

Noticing that A(r) is self-adjoint and separating the real and imaginary parts
of the above equality, one can get

v(⟨y, y⟩+ ⟨z, z⟩) = [(r∗1 + r)⟨ury, y⟩+ (r∗2 + r)⟨vrz, z⟩] sin θ

− a(r∗1 + r)Im⟨ure
−iθz, y⟩+ b(r∗2 + r)Im⟨vre−iθy, z⟩.

From (2.3) and the above equality, we can obtain

|v|
r

≤ 1

||y||2L2+||z||2L2

[
(r∗1+r)αr |⟨(ϕ1+rξr)y, y⟩|+(r∗2 + r)βr |⟨(ϕ1+rηr)z, z⟩|

+ a(r∗1 + r)αr|⟨(ϕ1 + rξr)e
−iθz, y⟩|+ b(r∗2 + r)βr|⟨(ϕ1 + rηr)e

−iθy, z⟩|
]
.

According to the Hölder inequality and the average value inequality, one can
get

|v|
r

≤ (1 + a)(r∗1 + r∗)αr

(
||ϕ1||H2

0
+ r||ξr||H2

0

)
+ (1 + b)(r∗2 + r∗)βr

(
||ϕ1||H2

0
+ r||ηr||H2

0

)
.

Thus the boundedness of v/r follows from the continuity of r 7→
(
||ξr||H2

0
, αr

)
and r 7→

(
||ηr||H2

0
, βr

)
. □

Lemma 3.3. If ξ ∈ H2
0 (Ω) and ⟨ϕ1, ξ⟩ = 0, then there exist positive constants

e1 and e2 such that

|⟨(d1∆+ r∗1)ξ, ξ⟩| ≥ e1||ξ||2L2 , |⟨(d2∆+ r∗2)ξ, ξ⟩| ≥ e2||ξ||2L2 .

Proof. It is well known that the operator −∆ on domain Ω with homogeneous
Dirichlet boundary conditions has a sequence of eigenvalues {λi}∞i=1 satisfying

0 < λ1 < λ2 < · · · < λn < · · · , lim
n→∞

λn = ∞,

and the corresponding eigenfunctions {ϕi}∞i=1 construct an orthogonal basis of
L2(Ω). In particular, for each ξ ∈ H2

0 (Ω), there is a sequence of real numbers
{cn}∞n=2 such that ξ =

∑∞
n=2 cnϕn(x) and therefore

(d1∆+ r∗1)ξ =
∞∑

n=2

cn(r
∗
1 − d1λn)ϕn.

From the above equality, we have

|⟨(d1∆+ r∗)ξ, ξ⟩| =
∞∑

n=2

c2n(d1λn − r∗1)||ϕn||2L2 ≥ e1

∞∑
n=2

c2n ||ϕn||2L2 = e1||ξ||2L2 ,

where e1 = d1(λ2 − λ1).
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Similarly, we can get the second inequality and e2 = d2(λ2 − λ1). □

Now, let a < d2

d1
, 0 < r ≪ 1 and suppose that (v, θ, y, z) is a solution of (3.8)

with v > 0, θ ∈ (0, 2π] with 0 ̸= (y, z) ∈ Y . Then y and z can be expressed as

y = ϕ1 + rγ, ⟨ϕ1, γ⟩ = 0,

z = (p+ iq)ϕ1 + rδ, ⟨ϕ1, δ⟩ = 0, p, q ∈ R.
(3.9)

Substituting (2.3), (3.9) and v = rh into (3.8), we obtain the following equiva-
lent system
(3.10)

g1(γ, δ, h, θ, a, b, r) = (d1∆+ r∗1)γ + (1− ih)(ϕ1 + rγ)− (r∗1 + r)(ϕ1 + rγ)
·
[
αr(1 + e−iθ)(ϕ1 + rξr) + aβr(ϕ1 + rηr)

]
−a(r∗1 + r)αr(ϕ1 + rξr)[(p+ iq)ϕ1 + rδ]e−iθ = 0,

g2(γ, δ, h, θ, a, b, r) = (d2∆+ r∗2)δ + (1− ih)[(p+ iq)ϕ1 + rδ]
+(r∗2 + r)[(p+ iq)ϕ1 + rδ]
·
[
bαr(ϕ1 + rξr)− (1 + e−iθ)βr(ϕ1 + rηr)

]
+b(r∗2 + r)βr(ϕ1 + rηr)(ϕ1 + rγ)e−iθ = 0,

g3(γ, δ, h, θ, a, b, r) = Re ⟨ϕ1, γ⟩ = 0,
g4(γ, δ, h, θ, a, b, r) = Im ⟨ϕ1, γ⟩ = 0,
g5(γ, δ, h, θ, a, b, r) = Re ⟨ϕ1, δ⟩ = 0,
g6(γ, δ, h, θ, a, b, r) = Im ⟨ϕ1, δ⟩ = 0.

Lemma 3.4. If a < d2

d1
, 0 < r∗ ≪ 1 and (γr, δr, hr, θr, pr, qr) ∈ (Y ∩R(D))×

R4 solves (3.10), then (γr, δr, hr, θr, pr, qr) is bounded in Y ×R4 for r ∈ [0, r∗].

Proof. It follows easily from Lemma 3.2 that {hr} is bounded for r ∈ [0, r∗].
In addition, since (γr, δr) ∈ Y and ⟨ϕ1, γ

r⟩ = ⟨ϕ1, δ
r⟩ = 0, Lemma 3.3 and the

first two equalities of (3.10) give that there exist positive constants c1 and c2
such that

(3.11)

c1||γr||2L2 ≤ |⟨ϱ1 (hr, θr, r) (ϕ1 + rγr), γr⟩|
+ | ⟨ϱ2 (hr, θr, r) [(pr + iqr)ϕ1 + rδr], γr⟩ |,

c2||δr||2L2 ≤ |⟨σ1 (h
r, θr, r) [(pr + iqr)ϕ1 + rδr], δr⟩|

+ |⟨σ2 (h
r, θr, r) (ϕ1 + rγr), δr⟩| ,

where

ϱ1 (h
r, θr, r) = (1− ihr)− (r∗1 + r)

[
αr(1 + e−iθr

)(ϕ1 + rξr) + aβr(ϕ1 + rηr)
]
,

σ1 (h
r, θr, r) = (1− ihr) + (r∗2 + r)[bαr(ϕ1 + rξr)− (1 + e−iθr

)βr(ϕ1 + rηr)],

ϱ2 (h
r, θr, r) = −a(r∗1 + r)αr(ϕ1 + rξr)e

−iθr

,

σ2 (h
r, θr, r) = b(r∗2 + r)βr(ϕ1 + rηr)e

−iθr

.

From Theorem 2.2, notice that {||ξr||H2
0
}, {||ηr||H2

0
}, {αr} and {βr} are bounded

for r ∈ [0, r∗]. Therefore, by means of the boundedness of hr, there are the
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constants Mi > 0 and Ni > 0(i = 1, 2) such that

||ϱi (hr, θr, r) ||∞ ≤ c1Mi and ||σi (h
r, θr, r) ||∞ ≤ c2Ni, i = 1, 2.

Using the Hölder inequality, (3.11) can be rewritten as

||γr||2L2 ≤ M1 (||ϕ1||L2 + r||γr||L2) ||γr||L2 +M2 [(|pr|+ |qr|) ||ϕ1||L2

+r||δr||L2 ] ||γr||L2 ,

||δr||2L2 ≤ N1 [(|pr|+ |qr|) ||ϕ1||L2 + r||δr||L2 ] ||δr||L2 +N2 (||ϕ1||L2

+r||γr||L2) ||δr||L2 ,

that is

||γr||L2 ≤ [M1 +M2 (|pr|+ |qr|)] ||ϕ1||L2 + r (M1||γr||L2 +M2||δr||L2) ,

||δr||L2 ≤ [N2 +N1 (|pr|+ |qr|)] ||ϕ1||L2 + r (N2||γr||L2 +N1||δr||L2) .

Let M = max{M1,M2}, N = max{N1, N2} and assume that r∗(M +N) < 1
2 .

Then from the above inequalities we can obtain

(3.12) ||γr||L2 + ||δr||L2 ≤ 2(M +N) [1 + (|pr|+ |qr|)] ||ϕ1||L2 .

In addition, noting that (γr, δr, hr, θr, pr, qr) ∈ (Y ∩R(D))×R4 solves (3.10),
it follows from the first equation of (3.10) that⟨

(1− ihr)(ϕ1 + rγr)− (r∗1 + r)(ϕ1 + rγr)

×
[
αr(1 + e−iθr

)(ϕ1 + rξr) + aβr(ϕ1 + rηr)
]

(3.13)

−a(r∗1 + r)αr(ϕ1 + rξr)[(p
r + iqr)ϕ1 + rδr]e−iθr

, ϕ1

⟩
= 0,

that is

(pr + iqr) ⟨K (hr, θr, r)ϕ1, ϕ1⟩
= −⟨K (hr, θr, r) rδr, ϕ1⟩+ ⟨L (hr, θr, r) (ϕ1 + rγr), ϕ1⟩ ,(3.14)

where

K (hr, θr, r) = a(r∗1 + r)αr(ϕ1 + rξr)e
−iθr

,

L (hr, θr, r) = (1− ihr)− (r∗1 + r)
[
αr(1 + e−iθr

)(ϕ1 + rξr) + aβr(ϕ1 + rηr)
]
.

From the boundedness of {||ξr||H2
0
}, {||ηr||H2

0
}, {αr}, {βr}, {hr}(r ∈ [0, r∗]), we

know that ||K (hr, θr, r) ||∞ and ||L (hr, θr, r) ||∞ are bounded for r ∈ [0, r∗].
Then from (3.14) we can get that there exist constants L1, L2 > 0 such that

(3.15) |pr|+ |qr| ≤ L1 + L2r (||γr||L2 + ||δr||L2) .

(3.12) and (3.15) give that {||γr||L2}, {||δr||L2}, {|pr|} and {|qr|} are bounded
for r ∈ [0, r∗]. In addition, noticing that D : Y ∩R(D) → R(D) has a bounded
inverse and by applying D−1 on gi(γ

r, δr, hr, θr, ar, br) = 0(i = 1, 2) one can
obtain the boundedness of (γr, δr) in Y and thus the proof is complete. □
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Theorem 3.5. Suppose that a < d2

d1
and 0 < r∗ ≪ 1. Then there exists a

continuous differential mapping r → (γr, δr, hr, θr, pr, qr) from [0, r∗] to (Y ∩
R(D))× R4 such that

γ0 = (1− i)ξ0, δ0 = (1− i)p0η0, θ0 =
π

2
, p0 =

d1 + bd2
d2 − ad1

, q0 = 0, h0 = 1

and (γr, δr, hr, θr, pr, qr) solves system (3.8) for r ∈ [0, r∗].
Moreover, if r ∈ (0, r∗) and (γr, δr, hr, θr, pr, qr) solves (3.8) with hr > 0

and θr ∈ (0, 2π], then

(γr, δr, hr, θr, pr, qr) = (γr, δr, hr, θr, pr, qr).

Proof. Let G : (Y ∩ R(D))× R5 → X × R4 be defined by G = (g1, g2, . . . , g6).
Then the definition of γ0, δ0, h0, θ0, p0 and q0 yields

g1(γ0, δ0, h0, θ0, p0, q0, 0) = (1− i)[(d1∆+ r∗1)ξ0 + ϕ1 − r∗1(α0 + aβ0)ϕ
2
1] = 0,

g2(γ0, δ0, h0, θ0, p0, q0, 0) = (1− i)a0[(d2∆+ r∗2)δ0 + ϕ1 + r∗2(bα0 − β0)ϕ
2
1] = 0,

and

gi(γ0, δ0, h0, θ0, p0, q0, 0) = 0, i = 3, 4, 5, 6,

that is

G(γ0, δ0, h0, θ0, p0, q0, 0) = 0.

Now, let J = (J1, J2, . . . , J6) : (Y ∩ R(D)) × R4 → X × R4 be the Frechét
derivative of G at (γ0, δ0, h0, θ0, p0, q0, 0), that is,

J = D(γ,δ,h,θ,p,q)G(γ0, δ0, h0, θ0, p0, q0, 0).

It follows easily from (3.10) that

J1 (γ, δ, h, θ, p, q) = (d1∆+ r∗1) γ − ihϕ1 + r∗1θα0 (1 + ap0)ϕ
2
1

+ir∗1α0ϕ
2
1a(p+ iq),

J2 (γ, δ, h, θ, p, q) = (d2∆+ r∗2) δ − ip0hϕ1 + θβ0r
∗
2 (−b+ p0)ϕ

2
1

+(1− i)(p+ iq)ϕ1 + r∗2 [bα0 − (1− i)β0]ϕ
2
1(p+ iq),

J3 (γ, δ, h, θ, p, q) = Re ⟨ϕ1, γ⟩ ,
J4(γ, δ, h, θ, p, q) = Im ⟨ϕ1, γ⟩ ,
J5(γ, δ, h, θ, p, q) = Re ⟨ϕ1, δ⟩ ,
J6(γ, δ, h, θ, p, q) = Im ⟨ϕ1, δ⟩ .

Noting that ϕ1 and ϕ2
1 do not belong to R(di∆ + ri∗)(i = 1, 2), we can show

that J is a bijection from (Y ∩R(D))×R4 → X×R4. Thus, the first conclusion
follows from the implicit function theorem. To obtain the second conclusion,
according to the uniqueness of the implicit function theorem, it is sufficient to
show that

(γr, δr, hr, θr, pr, qr) → (γ0, δ0, h0, θ0, p0, q0)

as r → 0 in the norm of (Y ∩ R(D))× R4.
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From Lemma 3.4 we know that {γr, δr, hr, θr, pr, qr : r ∈ (0, r∗]} is precom-
pact in X×R4. Let {γrn , δrn , hrn , θrn , prn , qrn} be any convergent subsequence
of {γr, δr, hr, θr, pr, qr} such that

(γrn , δrn , hrn , θrn , prn , qrn) → (γ0, δ0, h0, θ0, p0, q0), rn → 0 as n → ∞.

We claim that

(γ0, δ0, h0, θ0, p0, q0) = (γ0, δ0, h0, θ0, p0, q0).

To verify this fact, take the limit in gi(γ
rn , δrn , hrn , θrn , prn , qrn , rn) = 0(i =

1, 2) as n → ∞ to obtain

(3.16)

(d1∆+ r∗1)γ
0 + (1− ih0)ϕ1 − r∗1 (α0 + aβ0)ϕ

2
1

−r∗1e
−iθ0

α0

[
1 + a(p0 + iq0)

]
ϕ2
1 = 0,

(d2∆+ r∗2)δ
0 + (1− ih0)(p0 + iq0)ϕ1 + r∗2(p

0 + iq0) (bα0 − β0)

+r∗2e
−iθ0

β0

[
b− (p0 + iq0)

]
ϕ2
1 = 0.

Respectively, multiplying two equalities of (3.16) by ϕ1(x) and integrating them
on Ω, and noting that

α0 + aβ0 = c∗, bα0 − β0 = −c∗,
⟨
ϕ1, γ

0
⟩
=

⟨
ϕ1, δ

0
⟩
= 0,

we obtain

(3.17)
−ih0c∗ − r∗1e

−iθ0

α0

[
1 + a(p0 + iq0)

]
= 0,

−ih0(p0 + iq0)c∗ − r∗2e
−iθ0

β0

[
b+ (p0 + iq0)

]
= 0.

From (3.17) and the definition of α0, β0, r
∗
1 , r

∗
2 , we see that p0 + iq0 should be

a root of the following quadratic equation

ad1(d2 − ad1)x
2 − (ad21 + bd22)x+ bd2(d1 + bd2) = 0.

It is easy to see that the above equation has two positive real roots

x1 =
bd2
ad1

> 0, x2 =
d1 + bd2
d2 − ad1

=
β0

α0
> 0,

and therefore q0 = 0. Thus, we can conclude from (3.17) that θ0 = π
2 , p

0 = p0
and h0 = h0, and (3.16) becomes

(3.18)
(d1∆+ r∗1)γ

0 + (1− i)ϕ1 + (1− i)c∗ϕ
2
1 = 0,

(d2∆+ r∗2)δ
0 + (1− i)p0ϕ+ (1− i)p0c∗ϕ

2
1 = 0,

where ⟨ϕ1, γ
0⟩ = ⟨ϕ1, δ

0⟩ = 0. Since the solution of equation (3.18) in Y is
unique, it follows that γ0 = γ0 and δ0 = δ0. Thus, we have shown that

(γr, δr, hr, θr, pr, qr) → (γ0, δ0, h0, θ0, p0, q0) as r → 0

with the convergence in X ×R4. Combining the fact that (γr, δr, hr, θr, pr, qr)
solves (3.8), we can get

(γr, δr, hr, θr, pr, qr) → (γ0, δ0, h0, θ0, p0, q0) as r → 0

with the convergence in Y × R4 and this completes the proof. □
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The following corollary is an immediate consequence of Theorem 3.5.

Corollary 3.6. If a < d2

d1
and 0 < r∗ ≪ 1, then for each r ∈ (0, r∗), the

eigenvalue problem

∆(r, iv, τ)(y, z)T = 0, v > 0, τ > 0, 0 ̸= (y, z) ∈ D(A(r))

has a solution (v, τ, y, z), or equivalently, iv ∈ σP (Aτ (r)) if and only if

v = vr = rhr, τ = τn =
θr + 2nπ

vr
, n = 0, 1, 2, . . .

and (
y
z

)
= cYr = c

(
ϕ1 + rγr

(pr + iqr)ϕ1 + rδr

)
,

where Yr = (yr, zr)
T and c is any nonzero constant and γr, δr, hr, θr, pr, qr are

defined as Theorem 3.5.

4. Stability of positive steady-state solutions and existence of Hopf
bifurcations

In this section, we study the stability of the positive steady-state solution
(ur, vr) and the existence of Hopf bifurcation at (ur, vr) when 0 < r ≪ 1. From
Lemma 3.1, we know that the existence of bifurcating positive steady-state
solution (ur, vr)(0 < r ≪ 1) of system (1.2) implies its asymptotic stability
when τ = 0.

Next, we discuss the stability of (ur, vr) when τ > 0. In fact, it is sufficient
to show that how the eigenvalue λ = iv varies as the delay τ passes through
τn(n = 0, 1, 2, . . .). In order to complete this, we need to solve the adjoint
problem of (3.8) of the form

(4.1) (y, z)
[
A(r)− ivI2 +B(r)e−iθ

]
= 0,

where 0 ̸= (y, z) ∈ Y . Similarly, let

(4.2)
y = ϕ1 + rγ, ⟨ϕ1, γ⟩ = 0,

z = (p+ iq)ϕ1 + rδ, ⟨ϕ1, δ⟩ = 0, p, q ∈ R.

Using the arguments similar to Section 3, we can obtain that there is a con-
tinuous differential mapping r → (γ∗

r , δ
∗
r , p

∗
r , q

∗
r ) from [0, r∗] to (Y ∩R(D)×R2

such that
y∗r = ϕ1 + rγ∗

r , ⟨ϕ1, γ
∗
r ⟩ = 0,

z∗r = (p∗r + iq∗r )ϕ1 + rδ∗r , ⟨ϕ1, δ
∗
r ⟩ = 0,

satisfies (4.1), and

γ∗
0 = (1− i)ξ0, δ∗0 = (1− i)p∗0ξ0, p∗0 = −ad1

bd2
, q∗0 = 0, h∗

0 = 1.
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Now, define Sn by

Sn =

∫
Ω

(y∗ryr + z∗rzr)dx

+ e−iθrτn

∫
Ω

(y∗r , z
∗
r )B(r)Yrdx, n = 0, 1, 2, . . . .

(4.3)

Lemma 4.1. If a < d2

d1
and ad1(d1+bd2)

bd2(d2−ad1)
̸= 1, then Sn ̸= 0(n = 0, 1, 2, . . .) when

0 < r ≪ 1.

Proof. Noting that when 0 < r ≪ 1,

ur = αrrϕ1 +O(r2), vr = βrrϕ1 +O(r2),

yr = ϕ1 +O(r), zr = (pr + iqr)ϕ1 +O(r),

y∗r = ϕ1 +O(r), z∗r = (p∗r + iq∗r )ϕ1 +O(r),

and τn = θr+2nπ
hrr

, it follows from (4.3) and the definition of α0, β0, p0 and p∗0
that

Sn →
[
(1 + p0p

∗
0)c∗ + i

(
π
2 + 2nπ

)
(1, p∗0)

(
r∗1α0 ar∗1α0

−br∗2β0 r∗2β0

)(
1
p0

)] ∫
Ω
ϕ3
1(x)dx

=
{
(1+p0p

∗
0)c∗+i

(
π
2 + 2nπ

)
[r∗1α0(1 + ap0)+r∗2p

∗
0β0(−b+ p0)]

} ∫
Ω
ϕ3
1(x)dx.

Since p0 = β0

α0
and r∗1(α0 + aβ0) = r∗2(−bα0 + β0) = c∗, one can get

r∗1α0(1 + ap0) + r∗2p
∗
0β0(−b+ p0) = c∗(1 + p0p

∗
0).

Therefore, when a < d2

d1
and ad1(d1+bd2)

bd2(d2−ad1)
̸= 1,

Sn → (1 + p0p
∗
0)

[
1 + i

(π
2
+ 2nπ

)] ∫
Ω

ϕ2
1(x)dx ̸= 0.

This show that Sn ̸= 0 for r ∈ (0, r∗] and the proof is complete. □

Lemma 4.2. If a < d2

d1
, ad1(d1+bd2)

bd2(d2−ad1)
̸= 1 and 0 < r∗ ≪ 1, then for each

r ∈ (0, r∗], λ = ivr is a simple eigenvalue of Aτn(r)(n = 0, 1, . . .).

Proof. From Corollary 3.6, we can see that dimN [Aτn(r) − ivr] = 1(n =
0, 1, . . .). It follows from the definition of Aτn(r) that

N [Aτn(r)− ivr] = Span
{
Yre

ivrθ, θ ∈ [−τn, 0]
}
.

Let φ = (φ1, φ2)
T ∈ D (Aτn(r)) ∩ D

(
[Aτn(r)]

2
)
and assume that

(4.4) [Aτn(r)− ivr]
2φ = 0.

It is easy to see that

(Aτn(r)− ivr)φ ∈ N [Aτn(r)− ivr] = Span
{
Yre

ivrθ, θ ∈ [−τn, 0]
}
.

Therefore, there exists a constant c such that

(Aτn(r)− ivr)φ = cYre
ivrθ, θ ∈ [−τn, 0].
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From the definition of Aτn(r), the above equation is equivalent to{
φ̇(θ) = ivrφ(θ) + cYre

ivrθ, θ ∈ [−τn, 0],
φ̇(0) = A(r)φ(0) +B(r)φ(−τn).

(4.5)

The first equation of (4.5) gives{
φ(θ) = φ(0)eivrθ + cθeivrθYr,
φ̇(0) = ivrφ(0) + cYr.

(4.6)

Setting θ = −τn in the first equation of (4.6) and noting that θr +2nπ = τnvr,
we have

φ(−τn) = φ(0)e−iθr − cτne
−iθrYr.(4.7)

Substituting (4.7) and the second expression of (4.6) into the second equation
of (4.5), one can obtain

(4.8) c
(
I2 + e−iθrτnB(r)

)
Yr =

(
A(k) + e−iθrB(r)− ivrI2

)
φ(0).

Using (y∗r , z
∗
r ) to multiple both sides of (4.8) and integrating it on Ω, we get

cSn =

∫
Ω

(y∗r , z
∗
r )

[
A(r) + e−iθrB(r)− ivrI2

]
φ(0)dx = 0.

By Lemma 4.1, we have c = 0. Therefore

(Aτn(r)− ivr)φ = 0,

which implies that φ ∈ N [Aτn(r)− ivr]. By induction we have

N ([Aτn(r)− ivr]
j) = N [Aτn(r)− ivr], j = 1, 2, . . . , n = 0, 1, . . . .

This shows that λ = ivr is exactly a simple eigenvalue of Aτn(r) for n = 0, 1, . . ..
This completes the proof. □

Now, by using the implicit function theorem, it is not difficult to show that
there is a neighborhood On × Cn ×Hn ⊂ R × C × Y of (τn, ivr, yr, zr) and a
continuous differential mapping (λ, y, z) : On → Cn × Hn such that for each
τ ∈ On, the unique eigenvalue of Aτ (r) is λ(τ) and

λ(τn) = ivr, y(τn) = yr, z(τn) = zr,

∆(r, λ(τ), τ)

(
y(τ)
z(τ)

)
= 0, τ ∈ On.

Differentiating two sides of the above equality with respect to τ at τn, we have

dλ(τn)

dτ

[
−I2 − τne

−iθrB(r)
]
Yr

+∆(k, ivr, τn)

(
y′(τn)
z′(τn)

)
+ ivre

−iθrB(r)Yr=0.

(4.9)



730 XIANG-PING YAN AND CUN-HUA ZHANG

Multiplying two sides of the above equality by (y∗r , z
∗
r ) and integrating it Ω,

and noting that ∫
Ω

(y∗r , z
∗
r )∆(r, ivr, τn)

(
y′(τn)
z′(τn)

)
dx = 0

and

Sn =

∫
Ω

(y∗ryr + z∗rzr)dx+ e−iθrτn

∫
Ω

(y∗r , z
∗
r )B(r)Yrdx,

we obtain
(4.10)

dλ(τn)
dτ = −

∫
Ω
(y∗

ryr+z∗
rzr)dx

∫
Ω
ivre

−iθr (y∗
r ,z

∗
r )B(r)Yrdx+ivkτn|∫Ω(y∗

r ,z
∗
r )B(r)Yrdx|2

|Sn|2
.

Lemma 4.3. If a < d2

d1
, ad1(d1+bd2)

bd2(d2−ad1)
̸= 1 and 0 < r∗ ≪ 1, then for each

r ∈ (0, r∗], the following transversality conditions hold:

Re
dλ(τn)

dτ
̸= 0, n = 0, 1, 2, . . . .

Proof. It follows from (4.9) that

Re
dλ(τn)

dτ
= Re

{
−
∫
Ω
(y∗ryr + z∗rzr)dx

∫
Ω
ivre

−iθr (y∗r , z
∗
r )B(r)Yrdx

|Sn|2

}
.

Noting that as r → 0,

ie−iθr → 1,∫
Ω

(y∗ryr + z∗rzr)dx →
∫
Ω

(y∗0y0 + z∗0z0)dx = (1 + p∗0p0)

∫
Ω

ϕ2
1(x)dx ̸= 0,

and∫
Ω

(y∗r , z
∗
r )B(r)Yrdx → −(1, p∗0)

(
r∗1α0 ar∗1α0

−br∗2β0 r∗2β0

)(
1
p0

)∫ π

0

ϕ2
1(x)dx

= −(1 + p∗0p0)

∫
Ω

ϕ3
1(x)dx ̸= 0,

since a < d2

d1
and ad1(d1+bd2)

bd2(d2−ad1)
̸= 1. Therefore, if 0 < r ≤ r∗, then Redλ(τn)

dτ ̸= 0

and the proof is complete. □

From Lemma 3.1, Corollary 3.6 and Lemma 4.3, we immediately have the
following theorem.

Theorem 4.4. Assume that a < d2

d1
and ad1(d1+bd2)

bd2(d2−ad1)
̸= 1. Then for each fixed

0 < r ≪ 1, the positive steady-state solution (ur, vr) of the system (1.2) is
asymptotically stable if 0 ≤ τ < τ0, and unstable when τ > τ0. In addition, the
system (1.2) undergoes a Hopf bifurcation at the positive equilibrium solution
(ur, vr) as the delay τ passes through each point τn(n = 0, 1, 2, . . .).
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