• Title/Summary/Keyword: Biased feedback

Search Result 28, Processing Time 0.022 seconds

Blind Signal Processing for Medical Sensing Systems with Optical-Fiber Signal Transmission

  • Kim, Namyong;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In many medical image devices, dc noise often prevents normal diagnosis. In wireless capsule endoscopy systems, multipath fading through indoor wireless links induces inter-symbol interference (ISI) and indoor electric devices generate impulsive noise in the received signal. Moreover, dc noise, ISI, and impulsive noise are also found in optical fiber communication that can be used in remote medical diagnosis. In this paper, a blind signal processing method based on the biased probability density functions of constant modulus error that is robust to those problems that can cause error propagation in decision feedback (DF) methods is presented. Based on this property of robustness to error propagation, a DF version of the method is proposed. In the simulation for the impulse response of optical fiber channels having slowly varying dc noise and impulsive noise, the proposed DF method yields a performance enhancement of approximately 10 dB in mean squared error over its linear counterpart.

Trait individual difference of reinforcement-based decision criterial learning during episodic recognition judgments (일화 재인 기억에서 강화에 근거한 의사결정 준거 학습의 특성 개인차 연구)

  • Han, Sang-Hoon
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.3
    • /
    • pp.357-381
    • /
    • 2009
  • Although it is known that there are personality characteristic variances in the sensitivity to environmental feedback, the trait individual difference has scarcely been explored in the context of recognition memory decision. The present study investigated this issue by examining the relationship between the feedback-based adaptive flexibility of recognition criterion positioning and personality differences in general sensitivity to non-laboratory outcomes. Experiment 1 demonstrated that veridical feedback itself had little effect on the recognition decision criterion whereas Experiment 2 demonstrated that biased feedback manipulations selectively restricted to high confidence errors, induced shifts even in the overall Old/New category criterion. Critically, individual differences in stable personality characteristic linked to reward seeking(Behavioral Activation System-BAS) and anxiety avoidance (Behavioral Inhibition System-BIS) has been shown to predict the sensitivity of subjects to this form of feedback-induced criterion learning. This data further support the idea that incremental reinforcement-based learning mechanism not often considered important during explicit recognition decisions may play a key role in criterion setting.

  • PDF

Electro-thermal Feedback Effects on the Signal in a Pulse Voltage Biased μ-bolometer Focal Plane Array (마이크로 볼로미터 초점면 배열에서 전기-열적 피드백 현상이 신호에 미치는 영향)

  • Park, Seung-Man;Han, Seungoh
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1886-1891
    • /
    • 2012
  • In this paper, the analytical models for the electrothermal feedback of a ${\mu}$-bolometer focal plane array(FPA) are proposed and applied to the conceptually designed FPA to investigate the electrothermal feedback effect on bolometer FPA signal. The temperature and resistance change of the ${\mu}$-bolometer by the electrothermal feedback(ETF) model are increased upto 20 and 35.7 % of those of no feedback case, respectively, while those by the effective thermal conductance(ETC) model increased 8.5 and 15.1 %. The integration current and output voltage of a CTIA used as an column amplifier of FPA are also increased upto 41.6 and 32.4 % by the ETF model, while increased upto 17.2 and 13.5 % by the ETC model. The proposed models give more accurate temperature change, accordingly larger signal than no feedback considering case. Electrothermal feedback effect should be considered to design a high performance and high density ${\mu}$-bolometer FPA. The proposed models are very useful to investigate the transient thermal analysis, also considered to be useful to predict the responsivity and dynamic range of ${\mu}$-bolometer FPAs.

A Process Detection Circuit using Self-biased Super MOS composit Circuit (자기-바이어스 슈퍼 MOS 복합회로를 이용한 공정 검출회로)

  • Suh Benjamin;Cho Hyun-Mook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.2
    • /
    • pp.81-86
    • /
    • 2006
  • In this paper, a new process detection circuit is proposed. The proposed process detection circuit compares a long channel MOS transistor (L > 0.4um) to a short channel MOS transistor which uses lowest feature size of the process. The circuit generates the differential current proportional to the deviation of carrier mobilities according to the process variation. This method keep the two transistor's drain voltage same by implementing the feedback using a high gain OPAMP. This paper also shows the new design of the simple high gam self-biased rail-to-rail OPAMP using a proposed self-biased super MOS composite circuit. The gain of designed OPAMP is measured over 100dB with $0.2{\sim}1.6V$ wide range CMR in single stage. Finally, the proposed process detection circuit is applied to a differential VCO and the VCO showed that the proposed process detection circuit compensates the process corners successfully and ensures the wide rage operation.

  • PDF

A Study of Low-Voltage Low-Power Linear Transconductor (저전압 저전력 선형 트랜스컨덕터에 관한 연구)

  • 김동용;신희종;차형우;정원섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.967-970
    • /
    • 1999
  • A novel linear transconductor for low-voltage low-power signal processing is proposed. The transconductor consists of a pnp differential-pair and a npn differential-pair which are biased by local negative feedback. The simulation results show that the transcondcutor with transconductance of 50 $mutextrm{s}$ has a linearity error of 0.05% and the power dissipation is 2.44 ㎽ over an input linear range from -2V to +2V at supply voltage $\pm$3V.

  • PDF

UNBIASED ADAPTIVE DECISION FEEDBACK EQUALIZATION

  • Shin, Hyun-Chool;Song, Woo-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.65-68
    • /
    • 2000
  • It is well-known that the decision rule in the mini-mum mean-squares-error decision feedback equalizer(MMSE-DFE) is biased, and therefore suboptimum with respect to error probability. We present a new family of algorithms that solve the bias problem in the adaptive DFE. A novel constraint, called the constant-norm con-straint, is introduced unifying the quadratic constraint and the monic one. A new cost function based on the constant-norm constraint and Lagrange multiplier is defined. Minimizing the cost function gives birth to a new family of unbiased adaptive DFE. The simula-tion results demonstrate that the proposed method in-deed produce unbiased solution in the presence of noise while keeping very simple both in computation and im-plementation.

  • PDF

Predicting numeric ratings for Google apps using text features and ensemble learning

  • Umer, Muhammad;Ashraf, Imran;Mehmood, Arif;Ullah, Saleem;Choi, Gyu Sang
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.95-108
    • /
    • 2021
  • Application (app) ratings are feedback provided voluntarily by users and serve as important evaluation criteria for apps. However, these ratings can often be biased owing to insufficient or missing votes. Additionally, significant differences have been observed between numeric ratings and user reviews. This study aims to predict the numeric ratings of Google apps using machine learning classifiers. It exploits numeric app ratings provided by users as training data and returns authentic mobile app ratings by analyzing user reviews. An ensemble learning model is proposed for this purpose that considers term frequency/inverse document frequency (TF/IDF) features. Three TF/IDF features, including unigrams, bigrams, and trigrams, were used. The dataset was scraped from the Google Play store, extracting data from 14 different app categories. Biased and unbiased user ratings were discriminated using TextBlob analysis to formulate the ground truth, from which the classifier prediction accuracy was then evaluated. The results demonstrate the high potential for machine learning-based classifiers to predict authentic numeric ratings based on actual user reviews.

An Active Voltage Doubling Rectifier with Unbalanced-Biased Comparators for Piezoelectric Energy Harvesters

  • Liu, Lianxi;Mu, Junchao;Yuan, Wenzhi;Tu, Wei;Zhu, Zhangming;Yang, Yintang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1226-1235
    • /
    • 2016
  • For wearable health monitoring systems, a fundamental problem is the limited space for storing energy, which can be translated into a short operational life. In this paper, a highly efficient active voltage doubling rectifier with a wide input range for micro-piezoelectric energy harvesting systems is proposed. To obtain a higher output voltage, the Dickson charge pump topology is chosen in this design. By replacing the passive diodes with unbalanced-biased comparator-controlled active counterparts, the proposed rectifier minimizes the voltage losses along the conduction path and solves the reverse leakage problem caused by conventional comparator-controlled active diodes. To improve the rectifier input voltage sensitivity and decrease the minimum operational input voltage, two low power common-gate comparators are introduced in the proposed design. To keep the comparator from oscillating, a positive feedback loop formed by the capacitor C is added to it. Based on the SMIC 0.18-μm standard CMOS process, the proposed rectifier is simulated and implemented. The area of the whole chip is 0.91×0.97 mm2, while the rectifier core occupies only 13% of this area. The measured results show that the proposed rectifier can operate properly with input amplitudes ranging from 0.2 to 1.0V and with frequencies ranging from 20 to 3000 Hz. The proposed rectifier can achieve a 92.5% power conversion efficiency (PCE) with input amplitudes equal to 0.6 V at 200 Hz. The voltage conversion efficiency (VCE) is around 93% for input amplitudes greater than 0.3 V and load resistances larger than 20kΩ.

A Design of Digital CMOS X-ray Image Sensor with $32{\times}32$ Pixel Array Using Photon Counting Type (포톤 계수 방식의 $32{\times}32$ 픽셀 어레이를 갖는 디지털 CMOS X-ray 이미지 센서 설계)

  • Sung, Kwan-Young;Kim, Tae-Ho;Hwang, Yoon-Geum;Jeon, Sung-Chae;Jin, Seung-Oh;Huh, Young;Ha, Pan-Bong;Park, Mu-Hun;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1235-1242
    • /
    • 2008
  • In this paper, x-ray image sensor of photon counting type having a $32{\times}32$ pixel array is designed with $0.18{\mu}m$ triple-well CMOS process. Each pixel of the designed image sensor has an area of loot $100{\times}100\;{\mu}m2$ and is composed of about 400 transistors. It has an open pad of an area of $50{\times}50{\mu}m2$ of CSA(charge Sensitive Amplifier) with x-ray detector through a bump bonding. To reduce layout size, self-biased folded cascode CMOS OP amp is used instead of folded cascode OP amp with voltage bias circuit at each single-pixel CSA, and 15-bit LFSR(Linear Feedback Shift Register) counter clock generator is proposed to remove short pulse which occurs from the clock before and after it enters the counting mode. And it is designed that sensor data can be read out of the sensor column by column using a column address decoder to reduce the maximum current of the CMOS x-ray image sensor in the readout mode.

Position estimation and control of SMA actuators based on electrical resistance measurement

  • Song, Gangbing;Ma, Ning;Lee, Ho-Jun
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.189-200
    • /
    • 2007
  • As a functional material, shape memory alloy (SMA) has attracted much attention and research effort to explore its unique properties and its applications in the past few decades. Some of its properties, in particular the electrical resistance (ER) based self-sensing property of SMA, have not been fully studied. Electrical resistance of an SMA wire varies during its phase transformation. This variation is an inherent property of the SMA wire, although it is highly nonlinear with hysteresis. The relationship between the displacement and the electrical resistance of an SMA wire is deterministic and repeatable to some degree, therefore enabling the self-sensing ability of the SMA. The potential of this self-sensing ability has not received sufficient exploration so far, and even the previous studies in literature lack generality. This paper concerns the utilization of the self-sensing property of a spring-biased Nickel-Titanium (Nitinol) SMA actuator for two applications: ER feedback position control of an SMA actuator without a position sensor, and estimation of the opening of a SMA actuated valve. The use of the self-sensing property eliminates the need for a position sensor, therefore reducing the cost and size of an SMA actuator assembly. Two experimental apparatuses are fabricated to facilitate the two proposed applications, respectively. Based on open-loop testing results, the curve fitting technique is used to represent the nonlinear relationships between the displacement and the electrical resistance of the two SMA wire actuators. Using the mathematical models of the two SMA actuators, respectively, a proportional plus derivative controller is designed for control of the SMA wire actuator using only electrical resistance feedback. Consequently, the opening of the SMA actuated valve can be estimated without using an extra sensor.