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ABSTRACT

It is well-known that the decision rule in the mini-
mum mean-squares-error decision feedback equalizer
(MMSE-DFE) is biased, and therefore suboptimum with
respect to error probability. We present a new family of
algorithms that solve the bias problem in the adaptive
DFE. A novel constraint, called the constant-norm con-
straint, is introduced unifying the quadratic constraint
and the monic one. A new cost function based on the
constant-norm constraint and Lagrange multiplier is
defined. Minimizing the cost function gives birth to
a new family of unbiased adaptive DFE. The simula-
tion results demonstrate that the proposed method in-
deed produce unbiased solution in the presence of noise
while keeping very simple both in computation and im-
plementation.

1. INTRODUCTION

In wireless communication systems, the multi-path chan-
nel is a major obstacle in reliable communication. The
limited bandwidth of the communication channel intro-
duces time dispersion effects which result in spreading
of the energy of one pulse into neighboring pulse inter-
vals, which is known as intersymbol interference (ISI)
[1]-[2]. Numerous works have been done to solve this
problem. A method of reducing the degrading effects
of the channel that has found in many practical appli-
cations is to use decision feedback equalizer (DFE).
Since its introduction by Austin [3], the DFE re-
ceiver structure has received considerable attention from
many researchers due to its improved performance over
the linear equalizer and reduced implementation com-

this criterion complicates the analysis and does not of-
fer further insight into the problem. So, the mean-
square error (MSE) criterion has been widely used.
This choice simplifies the analysis and leads to an easy
adaptive implementation. However, the DFE with the
minimum MSE (MMSE-DFE) is biased due to noise
and therefore suboptimum with respect to error proba-
bility [4]-[5]. It was shown in [5] that unbiased DFE has
the lowest probability error among all possible symbol-
by-symbol decisions. So, it is obvious that removing
the bias in DFE receiver is one of the most important
issues.

In this paper, by imposing the constant-norm con-
straint on filter coefficients, we solve the bias problem
in the MMSE-DFE. A new cost function based on the
constant-norm constraint and the Lagrange multiplier
is defined. By minimizing the cost function a new un-
biased adaptive DFE algorithm is derived.

The remainder of this paper is organized as follows.
Section 2 describes the system model and a new un-
biased DFE based on the constant-norm constraint is
presented. Then Section 3 gives a stochastic gradient
algorithm for unbiased adaptive DFE and its stationary
points analysis and studies its convergence properties
when stochastic gradient search is used. Section 4 eval-
uates performance of the proposed algorithm by com-
puter simulation. Finally conclusions are presented in
Section 5.

2. CONSTRAINED OPTIMIZATION FOR
UNBIASED DFE

The discrete-time baseband equivalent transmission sys-

plexity as compared with the nonlinear maximum-likelihood tem incorporating a decision feedback equalizer is shown

receiver.

The equalizer coeflicients are determined so that
the performance of the DFE is optimized according
to a chosen performance criterion. The most relevant
criterion would be the probability of error. However,

in Fig. 1. Let a zero-mean discrete-time signal z(n)
be the transmitted data sequence. Assuming that the
channel impulse response hg exists only over the finite
time interval (=K < k < L), then the input-output re-
lation for the discrete-time equivalent channel has the
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Figure 1: Proposed unbiased DFE

form
L
yn)= Y hz(n—k) ¢
k=—K
and the observed input to the DFE is given by

r(n) = y(n) + v(n), 2

where v(n) is white measurement noise with variance
o2 and is independent of the data z(n).

As shown in Fig. 1, the DFE consists of two symbol-
spaced FIR filters: a feedforward filter (FFF) that has
Ny taps, and a feedback filter (FBF') that has IV, strictly
causal taps.

In this paper, the FIR filters are expressed as vec-

tors. The FFF is denoted by f, where f7 = (fo fi --- fin,-n)- 2

Concerning the FBF, for analytical convenience the
augmented vector b is used as bY = [1b; -« by,]
The actual FBF coeflicients are {—by,—b2, -+, —bn, }.
From Fig. 1, it is straitforward to verify that under the
assumption of correct past decisions, the input to the
decision device is given by

Ne—-1 Ny
2n)= Y firlh—k) =Y biz(n—-A-1), (3)
k=0 =1

where A(0 < A < Ny —1) is the delay of the FFF.
Then the error signal is expressed as
e(n) = z(n-A)-2z(n)
= xT(n)b -7 (n)f, (4)
where xT(n) = [g(n—A)z(n—-A—-1) -+« z(n—A-

Ny)) and rT'(n) = [r(n) r(n = 1) --- r(n — Ny +1)].
Let e;(n) be a noise-free error defined by

es(n) = x"(n)b - yT (n)f. (5)
Since signal and noise are independent [6], squaring

and taking expectation of (5) give the expression of
the mean-square error (MSE)

Ny—1
El¢’(n)] = Elej(n)] + o} ( > ff) - (6
k=0

In minimizing the MSE, clearly the unwanted second
term on the right hand side of (6) adds a penalty func-
tion proportional to ||f||2 where ||f|| denotes the Eu-
clidean norm of a vector. This introduces an undesir-
able bias which depends on the noise power.

This bias problem is overcome by using the constant:
norm constraint

> fr=cC (7)
With this constraint, the MSE in (6) becomes
E[e*(n)] = Elej(n)] + Coy. 8)

Since Co? is a constant, minimizing (8) is equivalent
to minimizing the MSE under the noise-free condition.
This in turn produces a unbiased solution.

The optimum solution is obtained by minimizing
the MSE subject to (7). The augmented cost function,
with the conistant-norm constraint, using Lagrange mul-
tiplier A, is given by

;- E [e2(n)] + A (C —£TF)

(9)

Taking derivatives of J with respect to f, b, and A
results in

8J
o = ~Bref + Rrcb = M, (10)
aJ
55 = Rzrf - R:c::bv (11)
and
oJ T
55 = C—ff, (12)

where R.. = E [r(n)rT(n)], Rr. = E [r(n)xT(n)],
R,r = E [x(n)rT (n)], and R, = E [x(n)x (n)].

Let £, and b, be solutions for which the derivatives
of J are zero. Expressing b, in terms of f, in (11) and
substituting it into (10) yield

(=Rpr + Rez R Ryr) fo = Mo (13)

It follows from (13) that f, is an eigenvector of the ma-
trix (Ryr — RyzR;} Rzr) With the corresponding eigen-
value A [7]. It is obvious that the equation in (13) holds
even if we multiply the vector f, to both sides of (13).
Then A can be obtained as

_ fg‘ (Rrr - erR;;;ler) fo
= f?fo

A (14)

since fTf, # 0.



3. STOCASTIC GRADIENT ALGORITHM
FOR UNBIASED ADAPTIVE DFE

To adapt the FIR filters f and b, we shall consider
here the least mean square (LMS) algorithm. Global
convergence is guaranteed because there is only a single
global minimum in the constrained MSE surface [6](8}.

Replacing R, and R,, by their respective values
E[r(n)rT(n)] and E[r(n)xT(n)] in (10) and (11) pro-
duces

aJ
B0 = E[r(n)e(n)] — M(n) {15)
and oJ
B = —E[x(n)e(n)], (16)

since e(n) = x” (n)b(n) — r¥(n)f(n). Also, since b, =
R_!R,.f,, we can rewrite A in (14) as

— fg(_Rrr& + R*r:zbo)
= f?fo .

A 17
Since the exact value of A is unknown a priori, we use
an estimated eigenvalue for coefficients update.

Replacing f, and b, with f(n) and b(n), respec-
tively, then an estimated eigenvalue is given by

< f7(n)(=Rpf(n) + Rypb(n))
Alr) = P (n)£ () '

(18)

Since —R,-f(n)+ R,.b(n) = E[r(n)e(n)], the equation
(18) can be rewritten as

7 (1) Bfr(n)e(n)]

M) = oyt

(19)

Using A(n) in (19) instead of A in 8J/8f, an estimated
gradient is formulated as

aJ _{T(n)E[r(n)e(n)]

~e— = E[r(n)e(n)] T (n)t(n)

B f(n). (20)

Replacing the expected values by respective instan-
taneous values in (20) and (16), we have the following
stochastic gradient based update equations:

£f(n+1) = £(n) - pe(n) (r(n) - ;%%’;l(ggf(n))
b(n + 1) = b(n) + pe(n)x(n),
(21)
where p is the step size that controls convergence of
the adaptation process. Since

7 (n + Df(n + 1) = £ (n)f(n) + O°),

where the symbol O(u?) denotes the terms which are
in the order of u? or higher, computation of f7 (n)f(n)

_67_

is only needed after a fixed number of iterations to
suppress the accumulated error due to O(u?).

By using R,, = Ry, + 02141 and R,z = Ry, in
(18) where I, is the identity matrix of size L+ 1, the
equation (18) becomes

Sy = Tolnf() | 7 (Ryf(n) - RBysb(n))
YT T () 7 (n)f(n)

_ f(n)T (Ryyf(n) - Ryzb(n))

= o2+ £T () () (22)

As E[y(n)e,(n)] converges t6 0, A(n) becomes ¢Z. So,
A(n) can be interpreted as an estimate of noise power,
ie., A(n) = 82(n).

In the estimated gradient of (20), the second term
on the right hand side, which is the coefficient vector
f(n) weighted by the estimated eigenvalue A(n), ie.,
the estimated noise power 62(nr), is newly introduced,
compared with the conventional equation error algo-
rithm. The first term on the right hand side in (20)
which is the gradient in the conventional equation er-
ror algorithm can be represented as

E[r(n)e(n)] = E[y(n)es(n)] + o2f(n). (23)

As can be seen in (23), the bias-induced term is the
o2f(n) which corrupts the coefficient update. In the
proposed method the bias-induced term o2f(n) is com-
pensated by the novel correction term &2(n)f(n) and
thus the unbiased solution can be obtained.

The constraint in (7) does not mean that C is con-
stant for the whole adaptation period. The value C(n) =
£7 (n)f(n) converges to £7f, as the iteration goes since
f(n) converges to f,.

4. SIMULATION RESULTS

We evaluate the performance of the unbiased adaptive
equalizer by computer simulation in comparison with
the conventional LMS DFE. The discrete-time channel
model used for the simulation is given by

13
Z h.kz_k

k=-—5
= 325 +1+.327  +.2273 422718 (29)

H(z)

and the transmitted data is 8-level symbol with zero-
mean and variance 21, i.e.,

z(n) € {-7,-5,-3,~1,1,3,5,7}.

The measurement noise is white Gaussian with vari-
ance o2. The signal-to-noise ratio (SNR) is calculated

by
E 2
SNR = 10log <__-_E52EZ;}> .
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Figure 2: FFF coefficients (SNR=10dB)

03
(2} noise-free condition ——
0.25 (b) conventional - {
() the proposed method ——
0.2
z
5 0.15
o} .
3
3§ ol
2
Z
by 0.05
£
0
-0.05
-0.1 - * t
0 5 10 15 20

FBF tap index

Figure 3: FBF coeflicients (SNR=10dB)

The DFE consists of 40 FFF taps and 20 FBF taps and
A is set to 20. For coefficients update, we use a known
training sequence, i.e., training mode adaptation. The
step-size p is chosen as 0.00001 and the SNR is 10dB.

Fig. 2 and Fig. 3 show the filter coefficients of DFE
after adaptation. For the comparison purpose, the re-
sult under the noise-free condition, i.e., v(n) = 0 is
plotted. As can be seen in Fig. 2 and Fig. 3, the re-
sulting filter coefficients by the proposed method are
almost the same as those under the noise-free con-
dition. These facts demonstrate that the proposed
method gives indeed unbiased solution immune to noise.
For quantitative description of the debiasing capability
of the proposed method, we define the norm squared
parameter error as

lI£(n) = fa|* + Ib(n) — bol|?,

where f, and b, are the MMSE solutions of FFF and
FBF under the noise-free condition, respectively. Fig. 4
shows the results.
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Figure 4: Norm squared parameter error (SNR=10dB)

5. CONCLUSIONS

We have presented an efficient unbiased adaptive DFE
based on the constant-norm constrained optimization.
Although the proposed algorithm is developed on the
assumption that the FFF is symbol-spaced, the same
algorithm formular is derived for fractionally-spaced
DFE receiver.
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