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1  |   INTRODUCTION

Opinion mining is the process of identifying and detecting 
subjective information using natural language processing, 

text analysis, and computational linguistics. It is a subfield 
of text mining, which aims at building systems that identify 
and extract opinions within a text. Opinions play a signif-
icant role in decision-making in daily life. The ubiquity of 
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used. The dataset was scraped from the Google Play store, extracting data from 14 
different app categories. Biased and unbiased user ratings were discriminated using 
TextBlob analysis to formulate the ground truth, from which the classifier prediction 
accuracy was then evaluated. The results demonstrate the high potential for machine 
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smartphones increasingly impacts our work- and lifestyles. 
Hundreds of thousands of applications (“apps”) provide a 
multitude of everyday services encompassing medical care, 
fitness, beauty, surveillance, sports, etc. As of March 2019, 
a total of 2.6 million apps are available on the Google Play 
store [1], as shown in Figure 1A. Millions of users can down-
load, use, and evaluate these apps and provide feedback in the 
form of reviews and numeric ratings. Currently, 205.4 billion 
apps are downloaded annually and this number is expected to 
reach 352.9 billion by 2021 [2], as shown in Figure 1B. User 
reviews and numeric ratings are the leading guiding factors 
for other users considering whether to adopt particular apps. 
Research [3] has demonstrated the strong influence of user 
reviews and numeric ratings in spreading the use of mobile 
apps generally. It was shown that consumers can prefer to 
buy a 5-star- rather than a 4-star-rated product, even at an 
additional cost of 20%–99%. The ability to share ratings, bug 
reports, and reviews increases the scope of engagement of 
users and app developers alike [4].

User feedback is provided in two forms, text review and 
numeric ratings, as illustrated in Figure 2. A text review, on 
the one hand, may contain positive or negative comments 
submitted by a user about a specific app or policy. These data 
can be highly useful for performing marketing analysis, man-
aging public relations, conducting product reviews, net pro-
moter scoring, giving product feedback, delivering customer 
service, and so on [5].

A numeric rating, on the other hand, is a quantitative 
value given by a user, ranging from 1 to 5. It is an aggre-
gated rating, typically defined by an app user selecting one 
or more star icons. A high numeric rating motivates more 
potential users to download the app. Given the importance 
of reviews and app ratings, the possibility of biased and fake 
reviews is a substantial concern. Currently, there is no stan-
dard mechanism for validating the authenticity of numeric 

user ratings. This causes inconvenience and uncertainty for 
end users wishing to select the most suitable mobile apps. 
Predominantly, users tend to select an app based only on the 
first comments and reviews they read. Typically, time-pres-
sured users feel they do not have the leisure to read entire 
reviews, which results in their selecting the wrong app.

Although several approaches to address these problems 
have been proposed [6,7], they focus essentially on identifying 
only a polarity inherent in user reviews. Polarity and subjectiv-
ity are defined in terms of three descriptors: positive, negative, 
and neutral. These approaches focus on reviews exclusively 
without considering actual app ratings, thereby ignoring the 
problem of mismatched numeric ratings. Our experiments 
show that displayed numeric ratings and user reviews are often 
mismatched, resulting in contradictory evaluations.

This proposes an approach designed to overcome this 
shortcoming by predicting the numeric rating for a mobile 

F I G U R E  1   Evolution of apps on the Google Play store [1,2]: (A) Total apps on the Google Play Store, (B) Total apps downloaded from the 
Google Play Store
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app based on user reviews. A machine learning-based en-
semble classifier is used for this purpose. The dataset is first 
preprocessed by applying a case transformation, removing 
numbers, removing stop words, tokenization, and stemming. 
To balance the dataset and avoid training classifiers dispro-
portionately on 5-star-rated instances, we extracted 25 000 
records associated with each target rating to train our ensem-
ble learning classifiers on all the text features amenable to 
rating. Hence, the new dataset contained 125 000 instances. 
We then applied the vector-space modeling (VSM) tech-
niques of term frequency/inverse document frequency (TF/
IDF), considering unigrams, bigrams, and trigrams and TF, 
to the preprocessed data. Features generated by these tech-
niques were then passed to ensemble learning models. The 
key contributions of this research can be summarized as 
follows:

•	 Machine learning algorithms, including the random forest 
(RF), the gradient boosting classifier (GBM), the extreme 
gradient boosting classifier (XGB), the AdaBoost classi-
fier (AB), and the extra tree classifier (ET) were applied to 
predict numeric ratings.

•	 The classifier accuracy was analyzed from the following 
two perspectives: (a) using the textual features derived 
from the reviews alone, and (b) using both the textual fea-
tures and the emoticons available in the reviews.

•	 For validation, famous apps belonging to each category 
were used to compare the numeric ratings predicted by en-
semble learning with user's actual ratings.

The rest of the paper is organized as follows. Section 
2 reviews prior-related research. Section 3 introduces the 
background information on the ensemble learning classi-
fiers used in this study. Section 4 presents our proposed 
approach and the experimental dataset. The results are dis-
cussed in Section 5 and concluding remarks are given in 
Section 6.

2  |   RELATED WORK

There has been a constant growth in the public and private 
information stored within the internet. This includes textual 
data expressing people's opinions on review sites, forums, 
blogs, and other social media platforms. Review-based pre-
diction systems allow this unstructured information to be au-
tomatically transformed into structured data reflecting public 
opinion. These structured data can be used subsequently as 
a measure of users' sentiments about specific applications, 
products, services, and brands. They can hence provide im-
portant information for product and services refinement. This 
kind of sentiment analysis was conducted in the following 
studies.

Kumari and others [8] and other researchers [9,10,5] used 
the naïve Bayes (NB) classifier to classify opinions as posi-
tive, negative, or neutral. Wang and others [11] argued that 
a rating is not entirely determined by a review content. For 
example, a user may well intend to give a positive review 
by employing positive words, and yet issue a comparatively 
lower rating.

Dave and others [12] proposed a method for extracting 
the polarity in user reviews of products, expressed as poor, 
mixed, or good. The classifier used was NB. According to 
Pang et al., although machine learning approaches perform 
much better for traditional topic-based categorization, they 
are less successful for sentiment analysis [13].

Information-extraction technologies have also been ex-
plored to identify and organize opinions contained in text. 
For example, some authors [14] proposed a scheme for an-
notating a low-level representation of opinions within a 
text. Additionally, they described an opinion-oriented “sce-
nario template” that summarizes the opinions expressed in 
a document. This approach is helpful for tasks that involve 
posing question from multiple perspectives. Other authors 
[15] suggested adopting a statistical analysis based on a spin 
model, to extract the semantic orientations of words. Mean-
field approximations were used to compute the approximate 
probability in the spin model. Semantic orientations are then 
evaluated as desirable or undesirable. A smaller number of 
seed words for the proposed model produce highly accurate 
semantic orientations based on the English lexicon.

Various sentiment analysis methods have been performed 
to summarize the ensembles of comments and reviews [16]. 
These methods use mathematical and statistical methods (es-
pecially involving Gaussian distributions) to overcome the 
problems encountered in sentiment analysis. Although these 
authors proposed a model, it was not implemented. A recent 
study [17] investigated the application of a machine learning 
algorithm to a dataset covering, for example, the app cate-
gory, the numbers of reviews and downloads, the size, type, 
and Android version of an app, and the content rating, to pre-
dict a Google app ranking. Decision trees, linear regression, 
logistic regression, support-vector machine, NB classifiers, 
k-means clustering, k-nearest neighbors, and artificial neural 
networks were studied for that purpose.

App ratings have been predicted based on the features 
provided for app [18,19]. Experiments were performed on 
the BlackBerry World and Samsung Android stores to col-
lect the raw features provided for the apps, including their 
price, rank of downloads, ratings, and textual descriptions. 
The features were then encoded into a numerical vector 
to be used in case-based reasoning and to predict the app 
rating. In contrast to the above-cited studies, other authors 
[20] investigated the nature of sentiments expressed in 
Google app reviews. Their study measured opinions and 
sentiments represented in user reviews through a variety 
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of emojis expressing, for example, negativity, positivity, 
anger, or excitement. It evaluated whether those sentiments 
are informative for the purpose of app development and 
refinement.

However, the above studies are unsatisfactory in various 
respects and are unsuitable for predicting numeric ratings of 
Google apps. First, text-mining techniques are ineffective when 
applied to app reviews, as it has Unicode supported language 
with a limited number of words. Second, those studies are based 
either on rating predictions made using inherent app features or 
on external features (eg, price, bug report, etc.). None of those 
studies investigated the possible discrepancies between users' 
numeric ratings and reviews. To our knowledge, this study is 
the first to investigate such discrepancies and to base numer-
ic-rating predictions for Google apps on users' reviews.

3  |   ENSEMBLE LEARNING 
METHODS USED FOR PREDICTION

Our approach exploits ensemble learning classifiers to 
predict numeric ratings based on users' reviews of mobile 
apps. We evaluated the performance of various ensemble 
learning classifiers, discussed briefly below. Models were 
implemented using Scikit learn [21,22] in Python. Since en-
semble learning methods are meta-algorithms that combine 
several machine learning techniques into one predictive 
model, they help to decrease the variance (bagging) and 
bias (boosting) and improve predictions (stacking) [23].

There is a copious literature on the lexicon- and machine 
learning-based classification of unstructured and structured 
data. However, machine learning-based classifiers are pre-
ferred over other methods on account of their superior per-
formance. For example, some authors [24] compared the 
performance of 10 models (five each from lexicon- and ma-
chine learning-based classifiers) in terms of their classifica-
tion efficacy. They concluded that RF and NB classifiers are 
substantially better at correctly uncovering human intuition. 
In contrast, lexicon-based approaches perform worse than 
machine learning. These findings were corroborated by other 
authors who concluded that machine learning-based classi-
fiers outperform lexicon-based approaches [25,26]. In light 
of other studies [23,25,26], the present study uses machine 
learning-based classifiers to predict Google app ratings.

RF provides an alternative to decision trees. It reduces the 
variance by generating several trees; however, the results are 
not easily interpretable. It is used for classification and re-
gression. It involves an ensemble of decision trees in which 
results are aggregated into one final result. RF reduces the 
variance in two ways: first by training on different data sam-
ples and second by using a random subset of features [27].

AdaBoost (AB), a short form for adaptive boost-
ing, is the first boosting algorithm to outperform other 

boosting algorithms in classification tasks in terms of accu-
racy. AdaBoost is adaptive in the sense that weak learners 
are adapted by considering earlier misclassifications by pre-
vious classifiers [28]. Any individual learner can be weak. 
However, when considering a complete learned model, 
AdaBoost achieves a high accuracy. It is also used for finding 
important features by calculating a feature importance score.

Gradient Boosting (GB) is an ensemble learning technique 
used for regression and classification problems. It produces 
a prediction model consisting of an ensemble of weak pre-
diction models, typically in the form of decision trees [29]. 
Boosting is a method for converting weak learners into strong 
learners. In boosting, each new tree is fitted to a modified 
version of the original dataset. The good performance of GB 
stems from its use of gradients in the loss function, which 
measures how efficiently the model coefficients fit the under-
lying data. The precise definition of the loss function depends 
on which quantity, feature, or property is to be optimized.

Extreme gradient boosting (XGBoost) is a boosting algo-
rithm with much appeal among data scientists for its execu-
tion speed and performance. Its good performance stems from 
its implementation, which is composed of three components, 
namely gradient boosting, stochastic gradient boosting, and 
regularized gradient boosting. It is used for both classifica-
tion and regression problems. XGBoost attracted attention 
when it earned success to several Kaggle competition win-
ners [30]. Feature importance scores are also calculated, as 
with other boosting and bagging classifiers.

The extra-trees (ET) classifier implements a meta-esti-
mator that fits a number of randomized decision trees (ET) 
on various subsamples of a dataset, performs averaging to 
improve the predictive accuracy, and controls overfitting 
[31]. Unlike RF, the entire sample is used by the ET classifier 
at each step and decision boundaries are picked randomly, 
rather than by selecting the best one. It is also known as “ex-
tremely randomized tree.”

4  |   PROPOSED APPROACH 
FOR EVALUATING APPLICATION 
RATINGS

This section describes the proposed approach, its modules, 
and the dataset used in the experiment.

The architecture of the proposed approach for predicting 
numeric ratings is outlined in Figure  3. It involves several 
subtasks, described separately below.

4.1  |  Dataset

The Google apps dataset was scraped from the Google Play store 
using the BeautifulSoup web scraper. The data were scraped for 
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applications released no later than 2014 to ensure a minimum 
time span of 5 years. The following criteria were applied:

•	 The app must be 5 years old at least.
•	 The app must have at least 4000 posted reviews.

The dataset contains a total of 502 658 records and includes 
the following attributes, described in Table 1: App_ category, 
App_ name, App_ id, App_ review, and App_ rating. Although 
other features and related meta-data can be scraped from the 
Google Play store in principle, this study focused on analyz-
ing the discrepancy between user reviews and app-rating pre-
dictions based on the features extracted from the reviews. We 
therefore neglected other meta-data that were irrelevant.

The scraped data consist of 14 different categories of mo-
bile apps. The primary motivation for sampling over multiple 
categories was to cover the broad range of reviews available. 
Each category (eg, sports, news, entertainment, health, and 
business) contains different types of textual reviews displaying 
a variety of expressions and words. Our purpose was therefore 
to evaluate the performance of the classifiers by applying them 
to diverse reviews, rather than considering only a few cate-
gories, to properly assess the classification accuracy. Table 2 
shows a sample of reviews obtained from the photography, 
health and fitness, finance, weather, and medical categories.

Figure 4 shows the names and relative size of all the cat-
egories in the dataset. Each app in the scraped database has 
at least 4000 reviews. The App_ rating and App_ review data 
from individual users were analyzed. The data were scraped 
using the BeautifulSoup (BS) web scraper, as depicted in the 
flow chart in Figure 5.

Data visualization is essential for understanding the data-
set by identifying patterns, trends, and correlations that might 
go undetected in text-based data. In several datasets, such 
connections can be recognized conveniently through data 

visualization. Therefore, we visualized the dataset to display 
the numeric ratings given to mobile apps.

Figure 6 identifies 5 as the most frequent app user rat-
ing. However, the possibility of biased or even fake ratings 
given by anonymous users is a major concern. We there-
fore considered the frequency of numeric ratings in each 
category. Figure  7 shows that mobile apps in the casual 
category always score higher ratings and are most likely to 
display a 5-star rating from app users. In contrast, develop-
ers of Video Players & Editors tend to receive the lowest 
numeric ratings.

4.2  |  Date preprocessing

The dataset collected from the Google Play store is semi-
structured or unstructured and contains significant super-
fluous data (defined as not contributing significantly to 
the prediction process). Since large datasets require longer 
training times, and because “stop words” reduce the pre-
diction accuracy, text preprocessing is therefore required 
to overcome this limitation. Preprocessing involves vari-
ous tasks including stemming, lowercase conversion, punc-
tuation, and excluding terms which do not carry higher 

F I G U R E  3   Architecture of the proposed approach
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T A B L E  1   Description of attributes in the used dataset

Attribute Description

App_ category App category in the Google Play store

App_ name Actual app name in the Google Play store

App_ id Unique app_ id assigned in the Google Play 
store for identification

App_ review Review given by each individual user for a 
specific app

App_ rating Rating given for the app by an individual user.
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weight in context to the text. Research has shown that text 
preprocessing plays a significant role in improving the pre-
diction accuracy [32].

The data must therefore be normalized before starting 
the training process using the proposed approach. To bet-
ter understand text preprocessing, consider the example of a 
review for the mobile app Seven minute workout challenge. 
A series of preprocessing steps and their output are shown 
in Table 3. After the completion of preprocessing, the en-
semble learning classifiers can be applied to the processed 
dataset.

4.3  |  Feature selection

Training a supervised machine learning algorithm requires 
textual documents to be represented in vectorial form. For 
this purpose, textual data must be converted into numbers 

Category Reviews

Photography 'I TOOK SOME PICTURES AND IT HAS A GOOD SNAP I 
HAVEN'T TRIED THE VIDEO RECORDER YET BUT SURE IT'S 
GOOD AS THE CAMERA KEEP ON BANGING'

Health & Fitness 'I loved this App,Really All the Exercises are Effective and Awesome to 
do…Also The Different features like Time, Day Tracker Helps a lot… 
I just have one query… Will These Exercises affect my height ? I am 
worried about my Height…I want it to increase.'

Finance 'ATM withdrawal feature via QR codes is broken on Google Pixel due 
to the app using a wrong aspect ratio with the camera – a square QR 
code is captured as 2:1, making it not recognizable. Please fix, if you 
could. Thanks.'

Weather 'Awesome app. Lots of information. Thunderstorms, live radar, 
hurricane Tracking. 5 day forecast. Everything you need to know 
about the weather.'

Medical 'I am a Physiotherapist and I need to make my clients understand about 
the musculoskeletal system and the part that is involved and I always 
wished if such things (apps) will ever be made. Thank to the creator of 
this app.'

T A B L E  2   Actual reviews from various 
app categories

F I G U R E  4   Count of each category in the dataset

F I G U R E  5   Flow diagram for data scraping
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without losing information. This transformation can be 
achieved using several techniques, for example, Bag-Of-
Words (BOW), which assigns a number to each word. 
However, character-length limitations in reviews can re-
duced the efficiency of BOW. Insufficient word occurrences 
can also limit the accuracy of BOW-based approaches [33]. 
We therefore exploit the term frequency (TF) to perform the 
transformation [34]. This involves counting the words in a 
document to produce a matrix displaying the total number of 
occurrences of each word in the document. As an example of 
TF, consider a sample review for the app My Talking Tom. 
The original review is:

It is great, my kids love to play it. Thank you for having 
this game on game store.

After preprocessing, the review becomes great kid love 
play. thank game game store. The matrix obtained by apply-
ing TF is shown in Table 4.

We also used TF/IDF (for unigrams, bigrams, and trigrams) 
to perform feature selection in our proposed approach [35]. TF/
IDF assigns a lesser weighting to highly common words (occur-
ring in almost all the documents), but gives a stronger weighting 
to the words that appear more specifically in a subset of docu-
ments. Commonly occurring words are thus assigned a lower 

weight, while some rare words occurring more specifically in 
a particular document are considered more important. The out-
come of TF/IDF on the above example is shown in Table 5.

4.4  |  Accuracy measures

We used different parameters for performance evaluation. 
Four basic notions are important for understanding the dif-
ferent accuracy parameters of a classifier [36,37].

True Positives (TP): positive predictions about a class 
which are correctly predicted by the classifier.

True Negatives (TN): negative predictions about a class 
which are correctly labeled by the classifier.

False Positives (FP): negative instances of a class which 
are incorrectly labeled as positive by the classifier.

False Negatives (FN): positive instances of a class which 
are incorrectly labeled as negative by the classifier.

Accuracy is an evaluation parameter widely used in clas-
sification models. In terms of TP, TN, FP, and FN, defined 
above, it is calculated as follows:

(1)
accuracy=

TP+TN

TP+TN+FP+FN
×100.

F I G U R E  7   User ratings by category
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Precision, in contrast, specifies the percentage of all 
instances of a class that are correctly labeled as positive, 
that is,

Recall is often considered as a measure of completeness 
and represents the proportion of true positive instances of a 
class that are labeled as such, that is,

The F score, which takes values between 0 and 1, con-
siders both the precision and the recall. It represents the 
average effect of the precision and recall, calculated as

5  |   EXPERIMENT AND RESULTS

This section details the experiment conducted herein, and dis-
cusses the results. To predict authentic numeric rating using 
ensemble learning models, 14 app categories, each contain-
ing 12 apps, were selected, giving a dataset with reviews from 
168 apps in total. The app categories were selected based on 
their popularity, as represented by their corresponding rating 
on the Google Play store. In contrast, one mobile app with 
a higher number of reviews and with the highest collective 
rating was selected from each category. Table 6 shows the 

(2)precision=
TP

TP+FP
.

(3)recall=
TP

TP+FN
.

(4)F1 =2.
precision.recall

precision + recall
.

Preprocessing steps Output

Actual text '\ u003c/\ u003e' I honestly preferred the older version, 
but the new one isn't to bad. The demonstrator keeps 
glitching out, and the next exercise keeps popping up 
while I'm doing a different one.’

Transform to lower case '\ u003c/\ u003e' i honestly preferred the older version, 
but the new one isnt to bad. the demonstrator keeps 
glitching out, and the next exercise keeps popping up 
while im doing a different one.’

Remov HTML tags i honestly preferred the older version, but the new one 
isnt to bad. the demonstrator keeps glitching out, and 
the next exercise keeps popping up while im doing a 
different one.’

Remove stop words & tokenization ['honestly', 'preferred', 'older', 'version', ',', 'new', 'one', 
'isnt', 'bad', '.', 'demonstrator', 'keeps', 'glitching', ',', 
'next', 'exercise', 'keeps', 'popping', 'im', 'different', 
'one', '.']

Stemming ‘honestly prefer older version, new one isn't bad. 
demonstrate keep glitch, next exercise keep pop im 
differ one.’

T A B L E  3   Attributes of the used 
dataset

T A B L E  4   Features obtained by applying TF

Game Great Kid love Play Store Thank

2 1 1 1 1 1 1

T A B L E  5   Features obtained by applying TF/IDF

Game Great Kid love Play Store Thank

0.63 0.31 0.31 0.31 0.31 0.31 0.31

T A B L E  6   Categories and apps selected for the experiment

App category Selected app
Total 
reviews

Sports Billiards City 32 280

Communication UC-Browser 30 000

Action Gun Shot 44 141

Arcade Tempe Run 2 40 751

Video players & editors MX Player 20 781

Weather Weather & Clock widget 27 324

Card Teen Pati Gold 36 520

Photography B612 41 440

Shopping Flipkart 47 840

Health & fitness Seven 34 415

Finance PhonePe 28 220

Casual Candy Crush Saga 52 560

Medical Pharmapedia Pakistan 24 002

Racing Beach Buggy Racing 42 384
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chosen categories and the apps selected in each category for 
the experiment. It also specifies the total number of reviews 
obtained for the selected apps.

5.1  |  Methodology adopted to evaluate the 
prediction performance

Numeric scores given by users in the Google App store may 
be biased or even exaggerated, simply because high ratings 
attract more new users. The examples shown in Table 7 sug-
gest that there is a genuine discrepancy between reviews 
and ratings. However, this hypothesis should be assessed 
systematically.

This study devises an algorithm that utilizes TextBlob 
to determine the discrepancy between a review posted by a 

user and the app rating. The algorithm flowchart is shown in 
Figure 8. The algorithm was implemented in Python, so that 
the sentiment property of TextBlob returns a named tuple of 
the form Sentiment (polarity, subjectivity) [38]. The polarity 
score is a float between −1.0 and 1.0, while the subjectivity 
is a float between 0.0 and 1.0, where 0.0 represents a strong 
objectivity and 1.0 a strong subjectivity. For example:

from textblob import TextBlob
t = TextBlob ("He is a cheater. i hate him ")
t.sentiment shows
Sentiment (polarity = −0.8, subjectivity = 0.9)
In our experiment, we calculated the polarity of every re-

view in the dataset and matched it against its corresponding 
rating to detect possible bias. If the polarity of the review 
is less than −0.5 and the rating associated with that review 
is greater than 3, the user rating is considered to be biased. 
Otherwise, it is considered to be unbiased.

The algorithm outcomes are shown in Table  8. This 
study considers the discrepancies between 3-, 4-, and 5-star 
ratings and their corresponding reviews, in the light of the 
importance of high rating for guiding new users. The anal-
ysis shows that 124 238 rating counts were biased out of a 
total of 502 658 user ratings, which reveals that 24.7162% 
of the total ratings for selected app categories are biased 
and the ground truth for unbiased ratings is 75.2838%.

5.2  |  Numeric-rating prediction with 
user reviews

User reviews were analyzed to predict numeric ratings 
based on different ensemble learning models and for sub-
sequent comparison against the aggregate rating for the 
apps considered. An aggregate rating is the original rat-
ing given to an app on the Google Play store. The purpose 
of this comparison is to detect discrepancies between user 
reviews and ratings. Table 9 shows the numeric ratings pre-
dicted by the machine learning classifiers selected for this 
experiment.

The highest predicted ratings are written in bold and un-
derlined. As shown in Table 9, for 11 out of the 14 categories, 
ET predicts the highest score. The ratings predicted by ET 

T A B L E  7   Examples of biased app ratings

User review
User app 
rating

'It's little waste of time, good just time pass, many ads 
are coming and irritated me'

4

'Hate the bimbo ad. I don't care for ads with women 
shaking their a$$'

5

'Fun game. Too bad there is a Kyrsten Sinema 
prostitution add after every level. Uninstalling.'

5

'It just takes a long time to load' 4

'Please fix the tool long starting of the game plsss' 4

F I G U R E  8   Flowchart of the method for detecting biased ratings

Google apps  
dataset

if Sentiment_Score < –0.5  
&& rating of review > 3

1, ..., N

BiasedRating++UnBiasedRating++

TrueFalse

Accessing reviews from dataset

Rating  

of   

reviews
Textblob calculating sentiment of review

T A B L E  8   Biased ratings calculated using TextBlob

App rating Rating count Biased count
Ground 
truth

1 49 608 N/A 49 608

2 15 605 N/A 15 605

3 32 238 14 725 17 513

4 68 419 20 479 47 940

5 336 781 89 034 247 747
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are closer to those of aggregate ratings than other classifi-
ers. However, for “weather & clock widget,” “Flipkart,” and 
“Candy crush saga,” GBM predicts a higher rating than other 
classifiers.

RF and AB yield the lowest predicted ratings for Google 
apps. RF is an ensemble technique that consists of joining 
multiple trees, thereby helping to overcome the limitations 
associated with single trees, that is, noise and outliers. RF 
is robust to noise and accurate. However, it is limited to a 
large collection of decision trees, owing to the counterintu-
itive nature of relationships within the input data [27]. The 
common assumption of RF is that sampling is representa-
tive. However, if the sampling is not fully representative, the 
prediction may be erroneous. AdaBoost is sensitive to noisy 
data and outliers. It converts weak learners into strong learn-
ers by applying weightings. By applying low weightings, 
AB can sometimes be trained on weak learners, resulting in 
overfitting.

GBM predicts higher ratings for two of the selected 
apps. In GBM, each new tree is fitted to a modified version 
of the original dataset. The Learning_ rate hyperparameter 
of GBM was set to 0.1 to avoid overfitting. Another reason 
for its performance is that it handles missing values more 
effectively than other machine learning models. This makes 
it a better predictor than other ensemble learning classifiers.

ET is similar to RF in terms of selecting a random sub-
set of K  features at each node for the tree split. However, 
unlike RF, it builds each tree from the complete learning 

sample and a cut-point is determined randomly to define 
a split, whereas RF selects the best cut-point based on the 
local sample. Thus, setting K  to 1 results in a tree structure 
that is independent of the training set labels [39]. Similarly, 
ET produces piece-wise multilinear approximations rather 
than the piece-wise constant ones of RF. In ET, additional 
randomization smoothens the decision boundaries. The 
main reason why ET sometimes outperform RF is due to 
the additional randomness in the ensemble, which leads 
the base learners to make mistakes that are less correlated. 
It has been shown [31] that ET competes with RF and per-
forms better in terms of accuracy.

XGB predicts less accurately compared to other classifi-
ers because the classes assigned during the model training 
are imbalanced for the app considered. XGB is not effective 
when the division of the data is imbalanced. Additionally, 
tree-based bagging algorithms handle colinearity better 
than boosting algorithms. The stopping criteria for tree 
pruning and tree splitting are missing in boosting tree-based 
approaches [40]. If the number of features is large with a 
balanced class distribution, XGB may give the best per-
formance by providing better average accuracy. Similarly, 
tree-based bagging algorithms also outperform boosting al-
gorithms when dealing with categorical independent vari-
ables [41].

Considering the results obtained using different classifi-
ers, GBM and ET visibly perform well and yield accurate 
predictions of app numeric ratings in all categories. These 

App Name
App 
reviews XGB RF GBM AB ET

Aggregate 
rating

Billiards City 4480 4.00 4.21 4.42 3.76 4.46 4.47

UC-Browser 3000 3.01 3.27 3.24 2.95 3.58 4.20

Gun Shot 3000 3.30 3.43 3.47 3.31 3.64 3.69

Temple Run 2 3000 3.85 3.93 3.99 3.74 4.10 4.45

MX Player 3000 2.83 2.98 3.06 2.95 3.29 3.92

Weather & 
Clolck Widget

4480 2.74 2.90 2.95 2.68 2.93 4.33

Teen Pati Gold 4480 3.81 3.99 4.09 3.83 4.40 4.61

B612 4000 3.46 3.75 3.91 3.53 4.22 4.64

Flipkart 4480 2.33 2.46 2.70 2.45 2.60 3.80

Seven 4424 2.92 3.18 3.37 2.90 3.51 4.43

PhonePe 4000 2.78 2.97 3.13 2.78 3.18 3.98

Candy Crush 
Saga

4480 3.83 3.87 4.04 3.73 4.02 4.56

Pharmapedia 
Pakistan

4133 3.20 3.29 3.48 3.30 3.68 4.72

Beach Buggy 
Racing

4480 3.95 4.02 4.13 3.84 4.17 4.61

Bold terms represents the closet predicted rating of classifier to the actual ratings.

T A B L E  9   Numeric-rating prediction 
using ensemble classifiers
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results are useful for evaluating App_ review and App_ rat-
ing. We can hence also conclude that numeric app ratings 
can be predicted based on user reviewers using ensemble ma-
chine learning algorithms.

The results also demonstrate the inconsistency of user 
numeric ratings and reviews. The analysis showed that 
no classifier can predict a higher numeric rating than 
the aggregate rating specified in the Google Play store. 
User-defined numeric ratings are typically higher than 
the review-based predictions. However, ensemble classi-
fiers can be useful to highlight such contradictions and 
discrepancies.

5.3  |  Performance of GBM and RF in 
predicting a given rating

A further analysis of RF and GBM performance was conducted 
separately by controlling the hyperparameters. First, RF was 
analyzed with TF/IDF and TF. The performance using TF/
IDF was tested using uni-, bi-, and trigrams. Table 10 shows 
the accuracy of RF with the discussed VSM. The accuracy was 
determined for different values of the RF tuning parameter n_ 
estimator. Experimental results show that RF is more accurate 
when the TF/IDF unigram is used for prediction. This is because 
user reviews are short and contain words like “Good,” “great 
app,” etc. This approach is suitable for the given dataset, which 
contains informal language (eg, with “please” abbreviated as 
“pls” or “plse”).

The results demonstrate that the prediction accuracy of 
RF (ie, 72% when used with TF/IDF (unigram)) is closer to 
the original accuracy (75.28%). As previously explained, this 
accuracy represents the proportion of unbiased ratings out 
of the total user-specified ratings for a given app. The RF 
results confirm that approximately 25% of the total ratings 
are biased as the app ratings are consistent with sentiments 
expressed in the reviews.

Similarly, the classification accuracy of RF was an-
alyzed using textual features and emoticons included in 
the reviews, and by including symbols and emoticons in 
the training phase. These inclusions reduced the clas-
sifier accuracy. This poor performance is presumably 
due to the relatively low number of reviews containing 

such emoticons. Since most reviews do not contain 
emoticons, adding them in the training phase favors im-
proper training, which ultimately reduces the accuracy. 
The results listed in Table 11 were generated by adding 
emoticons in the training phase, causing a slight drop in 
accuracy.

The RF results were cross-checked with the boosting 
classifier. The GBM accuracy was evaluated by vary-
ing its learning rate between 0.05 and 1. The purpose of 
varying the learning rate is to avoid overfitting. GBM is 
quick to learn and overfit the training data. One effective 
way to slow down learning in GBM is to vary the learn-
ing rate. The corresponding GBM accuracies are shown 
in Table  12, indicating that GBM performs well with a 
learning rate between 0.5 and 0.75, achieving a prediction 
accuracy of 71%.

Experiments demonstrate that the prediction accuracy 
can be improved. For this purpose, each application cate-
gory was trained separately using RF before making predic-
tions. Table 13 shows the result obtained by training each 
category of Google apps using RF. The precision, recall, 
and F-score values were obtained by averaging the rat-
ings from each individual class. Averages were calculated 
using the Scikit learn evaluation metrics library. The results 
demonstrate that training each category separately to make 
a prediction yields a higher accuracy than when using all 
categories combined.

The accuracy of RF and GBM reflects the discrepancies 
between the user-specified numeric rating and reviews. The 
numeric rating is approximately 20% higher than the out-
come of ensemble classifiers.

T A B L E  1 0   Accuracy of RF with different VSM techniques

VSM technique
Classification 
algorithm Accuracy

TF/IDF Random Forest 72%

TF/IDF(Bigram) Random Forest 69%

TF/IDF(Trigram) Random Forest 67%

TF Random Forest 71%

T A B L E  1 1   Comparison of RF accuracy with and without 
emoticons

VSM technique
Accuracy without 
Emoticons

Accuracy with 
Emoticons

TF/IDF 72% 71.67%

TF/IDF(Bigram) 69% 68.12%

TF/IDF(Trigram) 67% 67.50%

TF 71% 69.94%

T A B L E  1 2   Accuracy of GBM for different learning rates

Learning rate
Classification 
algorithm Accuracy

0.05 GBM 69%

0.1 GBM 70%

0.25 GBM 70%

0.5 GBM 71%

0.75 GBM 71%

1.0 GBM 70%
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6  |   CONCLUSIONS AND FUTURE 
WORK

User reviews are limited to identifying polarity and sub-
jectivity. However, the large increase in review-based data 
implies a need to focus also on performing predictions. 
This process is challenging yet fruitful, as user reviews 
are qualitative while ratings are essentially quantitative. 
The numeric scoring of apps in the Google App store may 
be biased and overrated because higher ratings given by 
users potentially attract several new users disproportion-
ately. This study therefore investigated the use of en-
semble classifiers to predict numeric ratings for Google 
Play store apps based on the user reviews for those apps. 
Several ensemble classifiers were investigated to evaluate 
their performance on the reviews scraped from the Google 
App store. TF/IDF features with unigrams, bigrams, and 
trigrams were utilized with the selected classifiers. The 
ground truth was calculated using a technique based on 
TextBlob analysis, which identifies the reviews showing a 
discrepancy with the user-awarded rating. Subsequently, 
it was used to evaluate the performance of the selected 
classifiers. TextBlob analysis showed that 24.72% of the 
user-defined app ratings are biased. Results demonstrate 
that tree-based bagging ensemble classifiers perform 
much better than boosting-based classifiers on account of 
their support for nonlinearity, colinearity, and tolerance 
to data noise. The analysis also reveals that the user re-
views are inconsistent with user numeric ratings, and that 
numeric ratings are higher than user reviews might sug-
gest. Future work includes the implementation of the deep 
learning technique to predict numeric rating.
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