
ETRI Journal. 2021;43(1):95–108.	﻿	   |  95wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

Opinion mining is the process of identifying and detecting
subjective information using natural language processing,

text analysis, and computational linguistics. It is a subfield
of text mining, which aims at building systems that identify
and extract opinions within a text. Opinions play a signif-
icant role in decision-making in daily life. The ubiquity of

Received: 26 September 2019  |  Revised: 24 January 2020  |  Accepted: 2 March 2020

DOI: 10.4218/etrij.2019-0443

O R I G I N A L A R T I C L E

Predicting numeric ratings for Google apps using text features
and ensemble learning

Muhammad Umer1   | Imran Ashraf2  | Arif Mehmood3  | Saleem Ullah1   |
Gyu Sang Choi2

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2020 ETRI

Muhammad Umer and Imran Ashraf contributed equally.

1Department of Computer Science, Khawaja
Freed University, Punjab, Pakistan
2Department of Information and
Communication Engineering, Yeungnam
Univeristy, Gyeongsan, Rep. of Korea
3Department of Computer Science and
Information Technology, The Islamia
University of Bahawalpur, Punjab, Pakistan

Correspondence
Gyu Sang Choi, Department of Information
and Communication Engineering,
Yeungnam University, Gyeongsan, Korea.
Email: castchoi@ynu.ac.kr

Saleem Ullah, Department of Computer
Science, Khawaja Freed University, Punjab,
Paksitan.
Email: saleem.ullah@kfueit.edu.pk

Funding information
This research was supported by the Basic
Science Research Program through the
National Research Foundation of Korea
(NRF) funded by the Ministry of Education
(NRF-2019R1A2C1006159), and MSIT
(Ministry of Science and ICT), Korea,
under the ITRC (Information Technology
Research Center) support program
(IITP-2019-2016-0-00313) supervised
by the IITP (Institute for Information &
Communications Technology Promotion).

Application (app) ratings are feedback provided voluntarily by users and serve as
important evaluation criteria for apps. However, these ratings can often be biased
owing to insufficient or missing votes. Additionally, significant differences have
been observed between numeric ratings and user reviews. This study aims to predict
the numeric ratings of Google apps using machine learning classifiers. It exploits
numeric app ratings provided by users as training data and returns authentic mobile
app ratings by analyzing user reviews. An ensemble learning model is proposed for
this purpose that considers term frequency/inverse document frequency (TF/IDF)
features. Three TF/IDF features, including unigrams, bigrams, and trigrams, were
used. The dataset was scraped from the Google Play store, extracting data from 14
different app categories. Biased and unbiased user ratings were discriminated using
TextBlob analysis to formulate the ground truth, from which the classifier prediction
accuracy was then evaluated. The results demonstrate the high potential for machine
learning-based classifiers to predict authentic numeric ratings based on actual user
reviews.

K E Y W O R D S

data mining, ensemble learning, Google app rating, opinion mining, text features, text mining

www.wileyonlinelibrary.com/journal/etrij
https://orcid.org/0000-0002-6015-9326
mailto:﻿
https://orcid.org/0000-0003-3747-1263
mailto:﻿
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:castchoi@ynu.ac.kr
mailto:saleem.ullah@kfueit.edu.pk

96  |     UMER et al.

smartphones increasingly impacts our work- and lifestyles.
Hundreds of thousands of applications (“apps”) provide a
multitude of everyday services encompassing medical care,
fitness, beauty, surveillance, sports, etc. As of March 2019,
a total of 2.6 million apps are available on the Google Play
store [1], as shown in Figure 1A. Millions of users can down-
load, use, and evaluate these apps and provide feedback in the
form of reviews and numeric ratings. Currently, 205.4 billion
apps are downloaded annually and this number is expected to
reach 352.9 billion by 2021 [2], as shown in Figure 1B. User
reviews and numeric ratings are the leading guiding factors
for other users considering whether to adopt particular apps.
Research [3] has demonstrated the strong influence of user
reviews and numeric ratings in spreading the use of mobile
apps generally. It was shown that consumers can prefer to
buy a 5-star- rather than a 4-star-rated product, even at an
additional cost of 20%–99%. The ability to share ratings, bug
reports, and reviews increases the scope of engagement of
users and app developers alike [4].

User feedback is provided in two forms, text review and
numeric ratings, as illustrated in Figure 2. A text review, on
the one hand, may contain positive or negative comments
submitted by a user about a specific app or policy. These data
can be highly useful for performing marketing analysis, man-
aging public relations, conducting product reviews, net pro-
moter scoring, giving product feedback, delivering customer
service, and so on [5].

A numeric rating, on the other hand, is a quantitative
value given by a user, ranging from 1 to 5. It is an aggre-
gated rating, typically defined by an app user selecting one
or more star icons. A high numeric rating motivates more
potential users to download the app. Given the importance
of reviews and app ratings, the possibility of biased and fake
reviews is a substantial concern. Currently, there is no stan-
dard mechanism for validating the authenticity of numeric

user ratings. This causes inconvenience and uncertainty for
end users wishing to select the most suitable mobile apps.
Predominantly, users tend to select an app based only on the
first comments and reviews they read. Typically, time-pres-
sured users feel they do not have the leisure to read entire
reviews, which results in their selecting the wrong app.

Although several approaches to address these problems
have been proposed [6,7], they focus essentially on identifying
only a polarity inherent in user reviews. Polarity and subjectiv-
ity are defined in terms of three descriptors: positive, negative,
and neutral. These approaches focus on reviews exclusively
without considering actual app ratings, thereby ignoring the
problem of mismatched numeric ratings. Our experiments
show that displayed numeric ratings and user reviews are often
mismatched, resulting in contradictory evaluations.

This proposes an approach designed to overcome this
shortcoming by predicting the numeric rating for a mobile

F I G U R E 1   Evolution of apps on the Google Play store [1,2]: (A) Total apps on the Google Play Store, (B) Total apps downloaded from the
Google Play Store

1 000 000

2 000 000

3 000 000

4 000 000
N

u
m

b
er

 o
f

av
ai

la
b

le
 a

p
p

s

0

Month

0

50

100

150

200

250

300

A
p

p
 d

o
w

n
lo

ad
s

p
er

 a
n

n
u

m
 (

b
il

li
o

n
s)

2016 2017 2018 2021
Year

149.30

178.10

205.40

358.20

(A) (B)

F I G U R E 2   The Google Play store apps review

     |  97UMER et al.

app based on user reviews. A machine learning-based en-
semble classifier is used for this purpose. The dataset is first
preprocessed by applying a case transformation, removing
numbers, removing stop words, tokenization, and stemming.
To balance the dataset and avoid training classifiers dispro-
portionately on 5-star-rated instances, we extracted 25 000
records associated with each target rating to train our ensem-
ble learning classifiers on all the text features amenable to
rating. Hence, the new dataset contained 125 000 instances.
We then applied the vector-space modeling (VSM) tech-
niques of term frequency/inverse document frequency (TF/
IDF), considering unigrams, bigrams, and trigrams and TF,
to the preprocessed data. Features generated by these tech-
niques were then passed to ensemble learning models. The
key contributions of this research can be summarized as
follows:

•	 Machine learning algorithms, including the random forest
(RF), the gradient boosting classifier (GBM), the extreme
gradient boosting classifier (XGB), the AdaBoost classi-
fier (AB), and the extra tree classifier (ET) were applied to
predict numeric ratings.

•	 The classifier accuracy was analyzed from the following
two perspectives: (a) using the textual features derived
from the reviews alone, and (b) using both the textual fea-
tures and the emoticons available in the reviews.

•	 For validation, famous apps belonging to each category
were used to compare the numeric ratings predicted by en-
semble learning with user's actual ratings.

The rest of the paper is organized as follows. Section
2 reviews prior-related research. Section 3 introduces the
background information on the ensemble learning classi-
fiers used in this study. Section 4 presents our proposed
approach and the experimental dataset. The results are dis-
cussed in Section 5 and concluding remarks are given in
Section 6.

2  |   RELATED WORK

There has been a constant growth in the public and private
information stored within the internet. This includes textual
data expressing people's opinions on review sites, forums,
blogs, and other social media platforms. Review-based pre-
diction systems allow this unstructured information to be au-
tomatically transformed into structured data reflecting public
opinion. These structured data can be used subsequently as
a measure of users' sentiments about specific applications,
products, services, and brands. They can hence provide im-
portant information for product and services refinement. This
kind of sentiment analysis was conducted in the following
studies.

Kumari and others [8] and other researchers [9,10,5] used
the naïve Bayes (NB) classifier to classify opinions as posi-
tive, negative, or neutral. Wang and others [11] argued that
a rating is not entirely determined by a review content. For
example, a user may well intend to give a positive review
by employing positive words, and yet issue a comparatively
lower rating.

Dave and others [12] proposed a method for extracting
the polarity in user reviews of products, expressed as poor,
mixed, or good. The classifier used was NB. According to
Pang et al., although machine learning approaches perform
much better for traditional topic-based categorization, they
are less successful for sentiment analysis [13].

Information-extraction technologies have also been ex-
plored to identify and organize opinions contained in text.
For example, some authors [14] proposed a scheme for an-
notating a low-level representation of opinions within a
text. Additionally, they described an opinion-oriented “sce-
nario template” that summarizes the opinions expressed in
a document. This approach is helpful for tasks that involve
posing question from multiple perspectives. Other authors
[15] suggested adopting a statistical analysis based on a spin
model, to extract the semantic orientations of words. Mean-
field approximations were used to compute the approximate
probability in the spin model. Semantic orientations are then
evaluated as desirable or undesirable. A smaller number of
seed words for the proposed model produce highly accurate
semantic orientations based on the English lexicon.

Various sentiment analysis methods have been performed
to summarize the ensembles of comments and reviews [16].
These methods use mathematical and statistical methods (es-
pecially involving Gaussian distributions) to overcome the
problems encountered in sentiment analysis. Although these
authors proposed a model, it was not implemented. A recent
study [17] investigated the application of a machine learning
algorithm to a dataset covering, for example, the app cate-
gory, the numbers of reviews and downloads, the size, type,
and Android version of an app, and the content rating, to pre-
dict a Google app ranking. Decision trees, linear regression,
logistic regression, support-vector machine, NB classifiers,
k-means clustering, k-nearest neighbors, and artificial neural
networks were studied for that purpose.

App ratings have been predicted based on the features
provided for app [18,19]. Experiments were performed on
the BlackBerry World and Samsung Android stores to col-
lect the raw features provided for the apps, including their
price, rank of downloads, ratings, and textual descriptions.
The features were then encoded into a numerical vector
to be used in case-based reasoning and to predict the app
rating. In contrast to the above-cited studies, other authors
[20] investigated the nature of sentiments expressed in
Google app reviews. Their study measured opinions and
sentiments represented in user reviews through a variety

98  |     UMER et al.

of emojis expressing, for example, negativity, positivity,
anger, or excitement. It evaluated whether those sentiments
are informative for the purpose of app development and
refinement.

However, the above studies are unsatisfactory in various
respects and are unsuitable for predicting numeric ratings of
Google apps. First, text-mining techniques are ineffective when
applied to app reviews, as it has Unicode supported language
with a limited number of words. Second, those studies are based
either on rating predictions made using inherent app features or
on external features (eg, price, bug report, etc.). None of those
studies investigated the possible discrepancies between users'
numeric ratings and reviews. To our knowledge, this study is
the first to investigate such discrepancies and to base numer-
ic-rating predictions for Google apps on users' reviews.

3  |   ENSEMBLE LEARNING
METHODS USED FOR PREDICTION

Our approach exploits ensemble learning classifiers to
predict numeric ratings based on users' reviews of mobile
apps. We evaluated the performance of various ensemble
learning classifiers, discussed briefly below. Models were
implemented using Scikit learn [21,22] in Python. Since en-
semble learning methods are meta-algorithms that combine
several machine learning techniques into one predictive
model, they help to decrease the variance (bagging) and
bias (boosting) and improve predictions (stacking) [23].

There is a copious literature on the lexicon- and machine
learning-based classification of unstructured and structured
data. However, machine learning-based classifiers are pre-
ferred over other methods on account of their superior per-
formance. For example, some authors [24] compared the
performance of 10 models (five each from lexicon- and ma-
chine learning-based classifiers) in terms of their classifica-
tion efficacy. They concluded that RF and NB classifiers are
substantially better at correctly uncovering human intuition.
In contrast, lexicon-based approaches perform worse than
machine learning. These findings were corroborated by other
authors who concluded that machine learning-based classi-
fiers outperform lexicon-based approaches [25,26]. In light
of other studies [23,25,26], the present study uses machine
learning-based classifiers to predict Google app ratings.

RF provides an alternative to decision trees. It reduces the
variance by generating several trees; however, the results are
not easily interpretable. It is used for classification and re-
gression. It involves an ensemble of decision trees in which
results are aggregated into one final result. RF reduces the
variance in two ways: first by training on different data sam-
ples and second by using a random subset of features [27].

AdaBoost (AB), a short form for adaptive boost-
ing, is the first boosting algorithm to outperform other

boosting algorithms in classification tasks in terms of accu-
racy. AdaBoost is adaptive in the sense that weak learners
are adapted by considering earlier misclassifications by pre-
vious classifiers [28]. Any individual learner can be weak.
However, when considering a complete learned model,
AdaBoost achieves a high accuracy. It is also used for finding
important features by calculating a feature importance score.

Gradient Boosting (GB) is an ensemble learning technique
used for regression and classification problems. It produces
a prediction model consisting of an ensemble of weak pre-
diction models, typically in the form of decision trees [29].
Boosting is a method for converting weak learners into strong
learners. In boosting, each new tree is fitted to a modified
version of the original dataset. The good performance of GB
stems from its use of gradients in the loss function, which
measures how efficiently the model coefficients fit the under-
lying data. The precise definition of the loss function depends
on which quantity, feature, or property is to be optimized.

Extreme gradient boosting (XGBoost) is a boosting algo-
rithm with much appeal among data scientists for its execu-
tion speed and performance. Its good performance stems from
its implementation, which is composed of three components,
namely gradient boosting, stochastic gradient boosting, and
regularized gradient boosting. It is used for both classifica-
tion and regression problems. XGBoost attracted attention
when it earned success to several Kaggle competition win-
ners [30]. Feature importance scores are also calculated, as
with other boosting and bagging classifiers.

The extra-trees (ET) classifier implements a meta-esti-
mator that fits a number of randomized decision trees (ET)
on various subsamples of a dataset, performs averaging to
improve the predictive accuracy, and controls overfitting
[31]. Unlike RF, the entire sample is used by the ET classifier
at each step and decision boundaries are picked randomly,
rather than by selecting the best one. It is also known as “ex-
tremely randomized tree.”

4  |   PROPOSED APPROACH
FOR EVALUATING APPLICATION
RATINGS

This section describes the proposed approach, its modules,
and the dataset used in the experiment.

The architecture of the proposed approach for predicting
numeric ratings is outlined in Figure 3. It involves several
subtasks, described separately below.

4.1  |  Dataset

The Google apps dataset was scraped from the Google Play store
using the BeautifulSoup web scraper. The data were scraped for

     |  99UMER et al.

applications released no later than 2014 to ensure a minimum
time span of 5 years. The following criteria were applied:

•	 The app must be 5 years old at least.
•	 The app must have at least 4000 posted reviews.

The dataset contains a total of 502 658 records and includes
the following attributes, described in Table 1: App_ category,
App_ name, App_ id, App_ review, and App_ rating. Although
other features and related meta-data can be scraped from the
Google Play store in principle, this study focused on analyz-
ing the discrepancy between user reviews and app-rating pre-
dictions based on the features extracted from the reviews. We
therefore neglected other meta-data that were irrelevant.

The scraped data consist of 14 different categories of mo-
bile apps. The primary motivation for sampling over multiple
categories was to cover the broad range of reviews available.
Each category (eg, sports, news, entertainment, health, and
business) contains different types of textual reviews displaying
a variety of expressions and words. Our purpose was therefore
to evaluate the performance of the classifiers by applying them
to diverse reviews, rather than considering only a few cate-
gories, to properly assess the classification accuracy. Table 2
shows a sample of reviews obtained from the photography,
health and fitness, finance, weather, and medical categories.

Figure 4 shows the names and relative size of all the cat-
egories in the dataset. Each app in the scraped database has
at least 4000 reviews. The App_ rating and App_ review data
from individual users were analyzed. The data were scraped
using the BeautifulSoup (BS) web scraper, as depicted in the
flow chart in Figure 5.

Data visualization is essential for understanding the data-
set by identifying patterns, trends, and correlations that might
go undetected in text-based data. In several datasets, such
connections can be recognized conveniently through data

visualization. Therefore, we visualized the dataset to display
the numeric ratings given to mobile apps.

Figure 6 identifies 5 as the most frequent app user rat-
ing. However, the possibility of biased or even fake ratings
given by anonymous users is a major concern. We there-
fore considered the frequency of numeric ratings in each
category. Figure 7 shows that mobile apps in the casual
category always score higher ratings and are most likely to
display a 5-star rating from app users. In contrast, develop-
ers of Video Players & Editors tend to receive the lowest
numeric ratings.

4.2  |  Date preprocessing

The dataset collected from the Google Play store is semi-
structured or unstructured and contains significant super-
fluous data (defined as not contributing significantly to
the prediction process). Since large datasets require longer
training times, and because “stop words” reduce the pre-
diction accuracy, text preprocessing is therefore required
to overcome this limitation. Preprocessing involves vari-
ous tasks including stemming, lowercase conversion, punc-
tuation, and excluding terms which do not carry higher

F I G U R E 3   Architecture of the proposed approach

Dataset

Preprocessing

Transform Case
Tokenization

Stemming
Stopwords

Train Test Split

Testing 30%

Preprocessing

Transfoff rm Case
Tokenization

Stemmmm ing
Stopwords

Train Test Split

Training 70%

Feature
Extraction

Vector
Representation

Machine
Learning
Models

Trained
Model

Google App
Store

Data Extraction

Evaluation

Transform

Fit
Transform

TF/IDF
TF Accuracy

Precision
Recall

F1-Score

Numeric
Rating

Prediction

Class Rating-Wise
Dataset Balance

T A B L E 1   Description of attributes in the used dataset

Attribute Description

App_ category App category in the Google Play store

App_ name Actual app name in the Google Play store

App_ id Unique app_ id assigned in the Google Play
store for identification

App_ review Review given by each individual user for a
specific app

App_ rating Rating given for the app by an individual user.

100  |     UMER et al.

weight in context to the text. Research has shown that text
preprocessing plays a significant role in improving the pre-
diction accuracy [32].

The data must therefore be normalized before starting
the training process using the proposed approach. To bet-
ter understand text preprocessing, consider the example of a
review for the mobile app Seven minute workout challenge.
A series of preprocessing steps and their output are shown
in Table 3. After the completion of preprocessing, the en-
semble learning classifiers can be applied to the processed
dataset.

4.3  |  Feature selection

Training a supervised machine learning algorithm requires
textual documents to be represented in vectorial form. For
this purpose, textual data must be converted into numbers

Category Reviews

Photography 'I TOOK SOME PICTURES AND IT HAS A GOOD SNAP I
HAVEN'T TRIED THE VIDEO RECORDER YET BUT SURE IT'S
GOOD AS THE CAMERA KEEP ON BANGING'

Health & Fitness 'I loved this App,Really All the Exercises are Effective and Awesome to
do…Also The Different features like Time, Day Tracker Helps a lot…
I just have one query… Will These Exercises affect my height ? I am
worried about my Height…I want it to increase.'

Finance 'ATM withdrawal feature via QR codes is broken on Google Pixel due
to the app using a wrong aspect ratio with the camera – a square QR
code is captured as 2:1, making it not recognizable. Please fix, if you
could. Thanks.'

Weather 'Awesome app. Lots of information. Thunderstorms, live radar,
hurricane Tracking. 5 day forecast. Everything you need to know
about the weather.'

Medical 'I am a Physiotherapist and I need to make my clients understand about
the musculoskeletal system and the part that is involved and I always
wished if such things (apps) will ever be made. Thank to the creator of
this app.'

T A B L E 2   Actual reviews from various
app categories

F I G U R E 4   Count of each category in the dataset

F I G U R E 5   Flow diagram for data scraping

Google app store BS web scrapper

HTML

HTML documents

HTML PARSER Data extraction Corpus

F I G U R E 6   Frequency of user ratings

50 000

100 000

150 000

200 000

250 000

300 000

350 000

0
5 4 3 2 1

Rating

Co
un

t o
f r

at
in

g

     |  101UMER et al.

without losing information. This transformation can be
achieved using several techniques, for example, Bag-Of-
Words (BOW), which assigns a number to each word.
However, character-length limitations in reviews can re-
duced the efficiency of BOW. Insufficient word occurrences
can also limit the accuracy of BOW-based approaches [33].
We therefore exploit the term frequency (TF) to perform the
transformation [34]. This involves counting the words in a
document to produce a matrix displaying the total number of
occurrences of each word in the document. As an example of
TF, consider a sample review for the app My Talking Tom.
The original review is:

It is great, my kids love to play it. Thank you for having
this game on game store.

After preprocessing, the review becomes great kid love
play. thank game game store. The matrix obtained by apply-
ing TF is shown in Table 4.

We also used TF/IDF (for unigrams, bigrams, and trigrams)
to perform feature selection in our proposed approach [35]. TF/
IDF assigns a lesser weighting to highly common words (occur-
ring in almost all the documents), but gives a stronger weighting
to the words that appear more specifically in a subset of docu-
ments. Commonly occurring words are thus assigned a lower

weight, while some rare words occurring more specifically in
a particular document are considered more important. The out-
come of TF/IDF on the above example is shown in Table 5.

4.4  |  Accuracy measures

We used different parameters for performance evaluation.
Four basic notions are important for understanding the dif-
ferent accuracy parameters of a classifier [36,37].

True Positives (TP): positive predictions about a class
which are correctly predicted by the classifier.

True Negatives (TN): negative predictions about a class
which are correctly labeled by the classifier.

False Positives (FP): negative instances of a class which
are incorrectly labeled as positive by the classifier.

False Negatives (FN): positive instances of a class which
are incorrectly labeled as negative by the classifier.

Accuracy is an evaluation parameter widely used in clas-
sification models. In terms of TP, TN, FP, and FN, defined
above, it is calculated as follows:

(1)
accuracy=

TP+TN

TP+TN+FP+FN
×100.

F I G U R E 7   User ratings by category
Shopping

Racing

Photography

Card

Action

Weather

Video & editors

Sports

Medical

Health & fitness

Finance

Communication

Casual

Arcade

A
p
p
li

ca
ti

o
n
s

Rating

1

2

3

4

5

0 5000 10 000 15 000 20 000 20 000 30 000 35 000 40 000

Rating count

102  |     UMER et al.

Precision, in contrast, specifies the percentage of all
instances of a class that are correctly labeled as positive,
that is,

Recall is often considered as a measure of completeness
and represents the proportion of true positive instances of a
class that are labeled as such, that is,

The F score, which takes values between 0 and 1, con-
siders both the precision and the recall. It represents the
average effect of the precision and recall, calculated as

5  |   EXPERIMENT AND RESULTS

This section details the experiment conducted herein, and dis-
cusses the results. To predict authentic numeric rating using
ensemble learning models, 14 app categories, each contain-
ing 12 apps, were selected, giving a dataset with reviews from
168 apps in total. The app categories were selected based on
their popularity, as represented by their corresponding rating
on the Google Play store. In contrast, one mobile app with
a higher number of reviews and with the highest collective
rating was selected from each category. Table 6 shows the

(2)precision=
TP

TP+FP
.

(3)recall=
TP

TP+FN
.

(4)F1 =2.
precision.recall

precision + recall
.

Preprocessing steps Output

Actual text '\ u003c/\ u003e' I honestly preferred the older version,
but the new one isn't to bad. The demonstrator keeps
glitching out, and the next exercise keeps popping up
while I'm doing a different one.’

Transform to lower case '\ u003c/\ u003e' i honestly preferred the older version,
but the new one isnt to bad. the demonstrator keeps
glitching out, and the next exercise keeps popping up
while im doing a different one.’

Remov HTML tags i honestly preferred the older version, but the new one
isnt to bad. the demonstrator keeps glitching out, and
the next exercise keeps popping up while im doing a
different one.’

Remove stop words & tokenization ['honestly', 'preferred', 'older', 'version', ',', 'new', 'one',
'isnt', 'bad', '.', 'demonstrator', 'keeps', 'glitching', ',',
'next', 'exercise', 'keeps', 'popping', 'im', 'different',
'one', '.']

Stemming ‘honestly prefer older version, new one isn't bad.
demonstrate keep glitch, next exercise keep pop im
differ one.’

T A B L E 3   Attributes of the used
dataset

T A B L E 4   Features obtained by applying TF

Game Great Kid love Play Store Thank

2 1 1 1 1 1 1

T A B L E 5   Features obtained by applying TF/IDF

Game Great Kid love Play Store Thank

0.63 0.31 0.31 0.31 0.31 0.31 0.31

T A B L E 6   Categories and apps selected for the experiment

App category Selected app
Total
reviews

Sports Billiards City 32 280

Communication UC-Browser 30 000

Action Gun Shot 44 141

Arcade Tempe Run 2 40 751

Video players & editors MX Player 20 781

Weather Weather & Clock widget 27 324

Card Teen Pati Gold 36 520

Photography B612 41 440

Shopping Flipkart 47 840

Health & fitness Seven 34 415

Finance PhonePe 28 220

Casual Candy Crush Saga 52 560

Medical Pharmapedia Pakistan 24 002

Racing Beach Buggy Racing 42 384

     |  103UMER et al.

chosen categories and the apps selected in each category for
the experiment. It also specifies the total number of reviews
obtained for the selected apps.

5.1  |  Methodology adopted to evaluate the
prediction performance

Numeric scores given by users in the Google App store may
be biased or even exaggerated, simply because high ratings
attract more new users. The examples shown in Table 7 sug-
gest that there is a genuine discrepancy between reviews
and ratings. However, this hypothesis should be assessed
systematically.

This study devises an algorithm that utilizes TextBlob
to determine the discrepancy between a review posted by a

user and the app rating. The algorithm flowchart is shown in
Figure 8. The algorithm was implemented in Python, so that
the sentiment property of TextBlob returns a named tuple of
the form Sentiment (polarity, subjectivity) [38]. The polarity
score is a float between −1.0 and 1.0, while the subjectivity
is a float between 0.0 and 1.0, where 0.0 represents a strong
objectivity and 1.0 a strong subjectivity. For example:

from textblob import TextBlob
t = TextBlob ("He is a cheater. i hate him ")
t.sentiment shows
Sentiment (polarity = −0.8, subjectivity = 0.9)
In our experiment, we calculated the polarity of every re-

view in the dataset and matched it against its corresponding
rating to detect possible bias. If the polarity of the review
is less than −0.5 and the rating associated with that review
is greater than 3, the user rating is considered to be biased.
Otherwise, it is considered to be unbiased.

The algorithm outcomes are shown in Table 8. This
study considers the discrepancies between 3-, 4-, and 5-star
ratings and their corresponding reviews, in the light of the
importance of high rating for guiding new users. The anal-
ysis shows that 124 238 rating counts were biased out of a
total of 502 658 user ratings, which reveals that 24.7162%
of the total ratings for selected app categories are biased
and the ground truth for unbiased ratings is 75.2838%.

5.2  |  Numeric-rating prediction with
user reviews

User reviews were analyzed to predict numeric ratings
based on different ensemble learning models and for sub-
sequent comparison against the aggregate rating for the
apps considered. An aggregate rating is the original rat-
ing given to an app on the Google Play store. The purpose
of this comparison is to detect discrepancies between user
reviews and ratings. Table 9 shows the numeric ratings pre-
dicted by the machine learning classifiers selected for this
experiment.

The highest predicted ratings are written in bold and un-
derlined. As shown in Table 9, for 11 out of the 14 categories,
ET predicts the highest score. The ratings predicted by ET

T A B L E 7   Examples of biased app ratings

User review
User app
rating

'It's little waste of time, good just time pass, many ads
are coming and irritated me'

4

'Hate the bimbo ad. I don't care for ads with women
shaking their a$$'

5

'Fun game. Too bad there is a Kyrsten Sinema
prostitution add after every level. Uninstalling.'

5

'It just takes a long time to load' 4

'Please fix the tool long starting of the game plsss' 4

F I G U R E 8   Flowchart of the method for detecting biased ratings

Google apps
dataset

if Sentiment_Score < –0.5
&& rating of review > 3

1, ..., N

BiasedRating++UnBiasedRating++

TrueFalse

Accessing reviews from dataset

Rating

of

reviews
Textblob calculating sentiment of review

T A B L E 8   Biased ratings calculated using TextBlob

App rating Rating count Biased count
Ground
truth

1 49 608 N/A 49 608

2 15 605 N/A 15 605

3 32 238 14 725 17 513

4 68 419 20 479 47 940

5 336 781 89 034 247 747

104  |     UMER et al.

are closer to those of aggregate ratings than other classifi-
ers. However, for “weather & clock widget,” “Flipkart,” and
“Candy crush saga,” GBM predicts a higher rating than other
classifiers.

RF and AB yield the lowest predicted ratings for Google
apps. RF is an ensemble technique that consists of joining
multiple trees, thereby helping to overcome the limitations
associated with single trees, that is, noise and outliers. RF
is robust to noise and accurate. However, it is limited to a
large collection of decision trees, owing to the counterintu-
itive nature of relationships within the input data [27]. The
common assumption of RF is that sampling is representa-
tive. However, if the sampling is not fully representative, the
prediction may be erroneous. AdaBoost is sensitive to noisy
data and outliers. It converts weak learners into strong learn-
ers by applying weightings. By applying low weightings,
AB can sometimes be trained on weak learners, resulting in
overfitting.

GBM predicts higher ratings for two of the selected
apps. In GBM, each new tree is fitted to a modified version
of the original dataset. The Learning_ rate hyperparameter
of GBM was set to 0.1 to avoid overfitting. Another reason
for its performance is that it handles missing values more
effectively than other machine learning models. This makes
it a better predictor than other ensemble learning classifiers.

ET is similar to RF in terms of selecting a random sub-
set of K features at each node for the tree split. However,
unlike RF, it builds each tree from the complete learning

sample and a cut-point is determined randomly to define
a split, whereas RF selects the best cut-point based on the
local sample. Thus, setting K to 1 results in a tree structure
that is independent of the training set labels [39]. Similarly,
ET produces piece-wise multilinear approximations rather
than the piece-wise constant ones of RF. In ET, additional
randomization smoothens the decision boundaries. The
main reason why ET sometimes outperform RF is due to
the additional randomness in the ensemble, which leads
the base learners to make mistakes that are less correlated.
It has been shown [31] that ET competes with RF and per-
forms better in terms of accuracy.

XGB predicts less accurately compared to other classifi-
ers because the classes assigned during the model training
are imbalanced for the app considered. XGB is not effective
when the division of the data is imbalanced. Additionally,
tree-based bagging algorithms handle colinearity better
than boosting algorithms. The stopping criteria for tree
pruning and tree splitting are missing in boosting tree-based
approaches [40]. If the number of features is large with a
balanced class distribution, XGB may give the best per-
formance by providing better average accuracy. Similarly,
tree-based bagging algorithms also outperform boosting al-
gorithms when dealing with categorical independent vari-
ables [41].

Considering the results obtained using different classifi-
ers, GBM and ET visibly perform well and yield accurate
predictions of app numeric ratings in all categories. These

App Name
App
reviews XGB RF GBM AB ET

Aggregate
rating

Billiards City 4480 4.00 4.21 4.42 3.76 4.46 4.47

UC-Browser 3000 3.01 3.27 3.24 2.95 3.58 4.20

Gun Shot 3000 3.30 3.43 3.47 3.31 3.64 3.69

Temple Run 2 3000 3.85 3.93 3.99 3.74 4.10 4.45

MX Player 3000 2.83 2.98 3.06 2.95 3.29 3.92

Weather &
Clolck Widget

4480 2.74 2.90 2.95 2.68 2.93 4.33

Teen Pati Gold 4480 3.81 3.99 4.09 3.83 4.40 4.61

B612 4000 3.46 3.75 3.91 3.53 4.22 4.64

Flipkart 4480 2.33 2.46 2.70 2.45 2.60 3.80

Seven 4424 2.92 3.18 3.37 2.90 3.51 4.43

PhonePe 4000 2.78 2.97 3.13 2.78 3.18 3.98

Candy Crush
Saga

4480 3.83 3.87 4.04 3.73 4.02 4.56

Pharmapedia
Pakistan

4133 3.20 3.29 3.48 3.30 3.68 4.72

Beach Buggy
Racing

4480 3.95 4.02 4.13 3.84 4.17 4.61

Bold terms represents the closet predicted rating of classifier to the actual ratings.

T A B L E 9   Numeric-rating prediction
using ensemble classifiers

     |  105UMER et al.

results are useful for evaluating App_ review and App_ rat-
ing. We can hence also conclude that numeric app ratings
can be predicted based on user reviewers using ensemble ma-
chine learning algorithms.

The results also demonstrate the inconsistency of user
numeric ratings and reviews. The analysis showed that
no classifier can predict a higher numeric rating than
the aggregate rating specified in the Google Play store.
User-defined numeric ratings are typically higher than
the review-based predictions. However, ensemble classi-
fiers can be useful to highlight such contradictions and
discrepancies.

5.3  |  Performance of GBM and RF in
predicting a given rating

A further analysis of RF and GBM performance was conducted
separately by controlling the hyperparameters. First, RF was
analyzed with TF/IDF and TF. The performance using TF/
IDF was tested using uni-, bi-, and trigrams. Table 10 shows
the accuracy of RF with the discussed VSM. The accuracy was
determined for different values of the RF tuning parameter n_
estimator. Experimental results show that RF is more accurate
when the TF/IDF unigram is used for prediction. This is because
user reviews are short and contain words like “Good,” “great
app,” etc. This approach is suitable for the given dataset, which
contains informal language (eg, with “please” abbreviated as
“pls” or “plse”).

The results demonstrate that the prediction accuracy of
RF (ie, 72% when used with TF/IDF (unigram)) is closer to
the original accuracy (75.28%). As previously explained, this
accuracy represents the proportion of unbiased ratings out
of the total user-specified ratings for a given app. The RF
results confirm that approximately 25% of the total ratings
are biased as the app ratings are consistent with sentiments
expressed in the reviews.

Similarly, the classification accuracy of RF was an-
alyzed using textual features and emoticons included in
the reviews, and by including symbols and emoticons in
the training phase. These inclusions reduced the clas-
sifier accuracy. This poor performance is presumably
due to the relatively low number of reviews containing

such emoticons. Since most reviews do not contain
emoticons, adding them in the training phase favors im-
proper training, which ultimately reduces the accuracy.
The results listed in Table 11 were generated by adding
emoticons in the training phase, causing a slight drop in
accuracy.

The RF results were cross-checked with the boosting
classifier. The GBM accuracy was evaluated by vary-
ing its learning rate between 0.05 and 1. The purpose of
varying the learning rate is to avoid overfitting. GBM is
quick to learn and overfit the training data. One effective
way to slow down learning in GBM is to vary the learn-
ing rate. The corresponding GBM accuracies are shown
in Table 12, indicating that GBM performs well with a
learning rate between 0.5 and 0.75, achieving a prediction
accuracy of 71%.

Experiments demonstrate that the prediction accuracy
can be improved. For this purpose, each application cate-
gory was trained separately using RF before making predic-
tions. Table 13 shows the result obtained by training each
category of Google apps using RF. The precision, recall,
and F-score values were obtained by averaging the rat-
ings from each individual class. Averages were calculated
using the Scikit learn evaluation metrics library. The results
demonstrate that training each category separately to make
a prediction yields a higher accuracy than when using all
categories combined.

The accuracy of RF and GBM reflects the discrepancies
between the user-specified numeric rating and reviews. The
numeric rating is approximately 20% higher than the out-
come of ensemble classifiers.

T A B L E 1 0   Accuracy of RF with different VSM techniques

VSM technique
Classification
algorithm Accuracy

TF/IDF Random Forest 72%

TF/IDF(Bigram) Random Forest 69%

TF/IDF(Trigram) Random Forest 67%

TF Random Forest 71%

T A B L E 1 1   Comparison of RF accuracy with and without
emoticons

VSM technique
Accuracy without
Emoticons

Accuracy with
Emoticons

TF/IDF 72% 71.67%

TF/IDF(Bigram) 69% 68.12%

TF/IDF(Trigram) 67% 67.50%

TF 71% 69.94%

T A B L E 1 2   Accuracy of GBM for different learning rates

Learning rate
Classification
algorithm Accuracy

0.05 GBM 69%

0.1 GBM 70%

0.25 GBM 70%

0.5 GBM 71%

0.75 GBM 71%

1.0 GBM 70%

106  |     UMER et al.

6  |   CONCLUSIONS AND FUTURE
WORK

User reviews are limited to identifying polarity and sub-
jectivity. However, the large increase in review-based data
implies a need to focus also on performing predictions.
This process is challenging yet fruitful, as user reviews
are qualitative while ratings are essentially quantitative.
The numeric scoring of apps in the Google App store may
be biased and overrated because higher ratings given by
users potentially attract several new users disproportion-
ately. This study therefore investigated the use of en-
semble classifiers to predict numeric ratings for Google
Play store apps based on the user reviews for those apps.
Several ensemble classifiers were investigated to evaluate
their performance on the reviews scraped from the Google
App store. TF/IDF features with unigrams, bigrams, and
trigrams were utilized with the selected classifiers. The
ground truth was calculated using a technique based on
TextBlob analysis, which identifies the reviews showing a
discrepancy with the user-awarded rating. Subsequently,
it was used to evaluate the performance of the selected
classifiers. TextBlob analysis showed that 24.72% of the
user-defined app ratings are biased. Results demonstrate
that tree-based bagging ensemble classifiers perform
much better than boosting-based classifiers on account of
their support for nonlinearity, colinearity, and tolerance
to data noise. The analysis also reveals that the user re-
views are inconsistent with user numeric ratings, and that
numeric ratings are higher than user reviews might sug-
gest. Future work includes the implementation of the deep
learning technique to predict numeric rating.

CONFLICT OF INTEREST
The authors declare no conflict of interest. The funders had
no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

ORCID
Muhammad Umer https://orcid.
org/0000-0002-6015-9326
Saleem Ullah https://orcid.org/0000-0003-3747-1263

REFERENCES
	 1.	 Statista, Number of available application in the Google Play store

from December 2009 to March 2019, https://www.stati​sta.com/
stati​stics/​26621​0/numbe​r-of-avail​able-appli​catio​ns-in-the-googl​
e-play-store/, Online: accessed 22 May 2019.

	 2.	 Statistaa, Number of mobile app downloads worldwide in 2017,
2018 and 2020 (in billions), https://www.stati​sta.com/stati​stics/​
27164​4/world​wide-free-and-paid-mobil​e-app-store​-downl​oads/,
Online: accessed 22 May 2019.

	 3.	 J. Horrigan, Online shopping, pew internet and american life proj-
ect, Washington, DC, 2018, http://www.pewin​ternet.org/Repor​
ts/2008/Onlin​e-Shopp​ing/01-Summa​ry-of-Findi​ngs.aspx Online:
accessed 8 Aug. 2014.

	 4.	 D. Pagano and W. Maalej, User feedback in the appstore: An em-
pirical study, in Proc. IEEE Int. Requirements Eng. Conf. (Rio de
Janeiro, Brazil), July 2013, pp. 125–134.

	 5.	 T. Chumwatana, Using sentiment analysis technique for analyzing
Thai customer satisfaction from social media, 2015.

	 6.	 T. Thiviya et al., Mobile apps' feature extraction based on user
reviews using machine learning, 2019.

	 7.	 H. Hanyang et al., Studying the consistency of star ratings and
reviews of popular free hybrid android and ios apps, Empirical
Softw. Eng. 24 (2019), no. 7, 7–32.

App category
Number Of
reviews Accuracy Precision Recall

F1-
Score

Sports 32 280 64% 58% 64% 57%

Communication 30 000 63% 55% 63% 54%

Action 44 141 70% 63% 71% 63%

Arcade 40 751 74% 67% 74% 67%

Video players &
editors

20 781 68% 60% 69% 61%

Weather 27 324 66% 58% 67% 59%

Card 36 520 70% 62% 70% 61%

Photography 41 440 72% 66% 73% 65%

Shopping 47 840 69% 65% 70% 63%

Health & fitness 34 415 81% 70% 81% 73%

Finance 28 220 63% 56% 64% 56%

Casual 52 560 75% 66% 75% 67%

Medical 24 002 77% 70% 77% 70%

Racing 42 384 74% 67% 74% 67%

T A B L E 1 3   Accuracy measures for the
different app categories, obtained using RF

https://orcid.org/0000-0002-6015-9326
https://orcid.org/0000-0002-6015-9326
https://orcid.org/0000-0002-6015-9326
https://orcid.org/0000-0003-3747-1263
https://orcid.org/0000-0003-3747-1263
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
http://www.pewinternet.org/Reports/2008/Online-Shopping/01-Summary-of-Findings.aspx
http://www.pewinternet.org/Reports/2008/Online-Shopping/01-Summary-of-Findings.aspx

     |  107UMER et al.

	 8.	 N. Kumari and S. Narayan Singh, Sentiment analysis on e-com-
merce application by using opinion mining, in Proc. Int. Conf.-
Cloud Syst. Big Data Eng. (Noida, India), Jan. 2016, pp. 320–325.

	 9.	 R. M. Duwairi and I. Qarqaz, Arabic sentiment analysis using su-
pervised classification, in Proc. Int. Conf. Future Internet Things
Cloud (Barcelona, Spain), Aug. 2014, pp. 579–583.

	10.	 H. S. Le, T. V. Le, and T. V. Pham, Aspect analysis for opinion min-
ing of vietnamese text, in Proc. Int. Conf. Adv. Comput. Applicat.
(Ho Chi Minh, Vietnam), Nov. 2015, pp. 118–123.

	11.	 H. Wang, L. Yue, and C. Zhai, Latent aspect rating analy-
sis on review text data: A rating regression approach, in Proc.
ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining
(Washington, D.C., USA), July 2010, pp. 783–792.

	12.	 K. Dave, S. Lawrence, and D. M. Pennock, Mining the peanut gal-
lery: Opinion extraction and semantic classification of product
reviews, in Proc. Int. Conf. World Wide Web (New York, USA),
2003, pp. 519–528.

	13.	 B. Pang, L. Lee, S. Vaithyanathan, Thumbs up?: Sentiment classi-
fication using machine learning techniques, in Proc. ACL-02 Conf.
Empirical Methods Natural Language Process. (Stroudsbrug, PA,
USA), 2002, pp. 79–86.

	14.	 C. Cardie et al., Combining low-level and summary representations
of opinions for multi-perspective question answering, New direc-
tions in question answering, 2003, pp. 20–27.

	15.	 H. Takamura, T. Inui, and M. Okumura, Extracting semantic
orientations of words using spin model, in Proc. Annu. Meeting
Association Comput. Linguistics (Ann Arbor, MI, USA), 2005, pp.
133–140.

	16.	 A. Buche, D. Chandak, and A. Zadgaonkar, Opinion mining and
analysis: A survey, arXiv preprint arXiv:1307.3336, 2013.

	17.	 M. Suleman, A. Malik, and S. S. Hussain, Google play store app
ranking prediction using machine learning algorithm, Urdu News
Headline, Text Classification by Using Different Machine Learning
Algorithms, 2019.

	18.	 F. Sarro et al., Customer rating reactions can be predicted purely
using app features, in Proc. IEEE Int. Requirements Eng. Conf.
(Banaf, Canada), Aug. 2018, pp. 76–87.

	19.	 S. Aslam and I. Ashraf, Data mining algorithms and their appli-
cations in education data mining, Int. J. Adv. Res. Computer Sci.
Manag. Studies 2 (2014), no. 7, 50–56.

	20.	 D. Martens and T. Johann, On the emotion of users in app reviews,
in Proc. IEEE/ACM Int. Workshop Emotion Awareness Softw.
Eng. (Buenos Aires, Argentina), May 2017, pp. 8–14.

	21.	 G. Hackeling, Mastering machine learning with scikit-learn, Packt
Publishing Ltd, 2017.

	22.	 Scikit learn, Scikit-learn classification and regression models,
http://sciki​tlearn.org/stabl​e/super​vised_learn​ing.html#super​vised​
-learn​ing/, Online: accessed 10 Apr. 2019

	23.	 O. Araque et al., Enhancing deep learning sentiment analysis with
ensemble techniques in social applications, Expert Syst. Appl. 77
(2017), 236–246.

	24.	 J. Hartmann et al., Comparing automated text classification meth-
ods, Int. J. Res. Mark. 36 (2019), 20–38.

	25.	 O. Aziz et al., A comparison of accuracy of fall detection algorithms
(threshold-based vs. machine learning) using waistmounted tri-axial
accelerometer signals from a comprehensive set of falls and non-fall
trials, Med. Biol. Eng. Comput. 55 (2017), no. 1, 45–55.

	26.	 Z. Hailong, G. Wenyan, and J. Bo, Machine learning and lexicon
based methods for sentiment classification: A survey, in Proc.
Web Inf. Syst. Applicat. Conf. (Tianjin, China), Sept. 2014, pp.
262–265.

	27.	 L. Breiman, Random forests, Mach. Learn. 45 (2001), no. 1, 5–32.
	28.	 R. E. Schapire and Y. Singer, Improved boosting algorithms using

confidence-rated predictions, Mach. Learn. 37 (1999), no. 3,
297–336.

	29.	 A. Natekin and A. Knoll, Gradient boosting machines, a tutorial,
Frontiers Neurorobotics 7 (2013), 21.

	30.	 T. Chen and C. Guestrin, Xgboost: A scalable tree boosting sys-
tem, in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery Data
Mining (San Francisco, CA, USA), Aug. 2016, pp. 785–794.

	31.	 P. Geurts, D. Ernst, and L. Wehenkel, Extremely randomized trees,
Mach. Learn. 63 (2006), no. 1, 3–42.

	32.	 R. Feldman and J. Sanger, The text mining handbook: Advanced
approaches in analyzing unstructured data, Cambridge University
Press, 2007.

	33.	 B. Sriram et al., Short text classification in twitter to improve infor-
mation filtering, in Proc. Int. ACM SIGIR Conf. Res. Development
Inf. Retrieval (Geneva, Switzerland), July 2010, pp. 841–842.

	34.	 Scikit learn, Scikit-learn feature extraction with countvectorizer,
https://sciki​t-learn.org/stabl​e/modul​es/gener​ated/sklea​rn.featu​re_
extra​ction.text.Count/, Online: accessed 5 Apr. 2019

	35.	 Scikit learn, Scikit-learn feature extraction with tf/idf, https://sciki​
t-learn.org/stabl​e/modul​es/gener​ated/sklea​rn.featu​re_extra​ction.
text.Tfidf/, Online: accessed 5 Apr. 2019

	36.	 J. Han, J. Pei, and M. Kamber, Data mining: Concepts and tech-
niques, Elsevier, 2011.

	37.	 I. Ashraf, S. Hur, and Y. Park, Blocate: A building identification
scheme in gps denied environments using smartphone sensors,
Sensors 18 (2018), no. 11, 3862.

	38.	 S. Loria, textblob documentation, Release 0.15 2 (2018).
	39.	 P. Geurts and G. Louppe, Learning to rank with extremely random-

ized trees, JMLR: Workshop Conf. Proc. 14 (2011) 49–61.
	40.	 X. Z. Fern and C. E. Brodley, Boosting lazy decision trees, In Proc.

Int. Conf. Mach. Learn., 2003, pp. 178–185.
	41.	 L. Breiman, Randomizing outputs to increase prediction accuracy,

Mach. Learn. 40 (2000), no. 3, 229–242.

http://scikitlearn.org/stable/supervised_learning.html#supervised-learning/
http://scikitlearn.org/stable/supervised_learning.html#supervised-learning/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.Count/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.Count/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.Tfidf/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.Tfidf/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.Tfidf/

108  |     UMER et al.

AUTHOR BIOGRAPHIES

Muhammad Umer received his BS
degree at the Department of Computer
Science, Khwaja Fareed University of
Engineering & IT(KFUEIT), Pakistan
(October 2014 to October 2018). Since
November 2018, he is enrolled in the
Master of Computer Science(KFUEIT)

program. He is also serving as a Research Assistant at the
Fareed Computing & Research Center, KFUEIT, Pakistan.
His recent research interests are related to data mining,
mainly machine learning and deep-learning-based IoT,
text mining, and computer vision tasks.

Imran Ashraf received his PhD in
Information & Communication
Engineering from Yeungnam
University, South Korea in 2018 and
MS degree in computer science from
the Blekinge Institute of Technology,
Karlskrona, Sweden, in 2010. He is

currently working as an Assistant Professor at the
Information and Communication Engineering Department,
Yeungnam University, Gyeongsan, South Korea. His re-
search areas include indoor positioning and localization,
indoor location-based services in wireless communica-
tion, and data mining & data analytics.

Arif Mehmood received his PhD de-
gree at the Department of Information
& Communication Engineering,
Yeungnam University, Korea
(February 2014 to November 2017).
He worked as an Assistant Professor at
the Department of Computer Science,

KFUEIT, Pakistan from November 2017 to December
2019. Currently, he is at the Islamia University of
Bahawalpur, Pakistan. His recent research interests are re-
lated to data mining, with main focus on AI and deep
learning-based text mining, and data science management
technologies.

Saleem Ullah was born in Ahmed Pur
East, Pakistan in 1983. He received his
BSc and MIT degrees in Computer
Science from Islamia University
Bahawalpur and Bahauddin Zakariya
University (Multan) in 2003 and 2005,
respectively. From 2006 to 2009, he

worked as a Network/IT Administrator in different compa-
nies. He obtained his doctoral degree from Chongqing
University, China in 2012. From August 2012 to February
2016, he worked as an Assistant Professor at the Islamia
University Bahawalpur, Pakistan. Currently, he is working
as an Associate Professor in Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan
since February 2016. He has nearly 13 years of industrial
experience in the field of IT. He is an active researcher in
the field of ad hoc networks, congestion control, and
security.

Gyu Sang Choi received his PhD at
the Department of Computer Science
and Engineering, Pennsylvania State
University, University Park, PA, USA
in 2005. He was a research staff mem-
ber at the Samsung Advanced Institute
of Technology (SAIT) for Samsung

Electronics from 2006 to 2009. Since 2009, he has been a
faculty member in the Department of Information &
Communication, Yeungnam University, Korea. His re-
search areas include nonvolatile memory and storage
systems.

