• Title/Summary/Keyword: Bias compensation

Search Result 116, Processing Time 0.021 seconds

Design of Temperature-Compensation Circuits of Ku-band Amplifiers for Satellite Payload (위성중계기용 Ku-대역 증폭기의 온도보상회로 설계)

  • 장병준;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1025-1033
    • /
    • 2002
  • This paper presents temperature-compensation circuits of Ku-band amplifiers for satellite payload. After carefully investigating design specifications of Ku-band amplifiers for satellite payload, we designed three types or temperature-compensation circuits, which are an active bias circuit, an attenuator control, and an ALC loop circuit. Our design technique demonstrates good agreement between measured and predicted results. These temperature-compensation circuits are suitable for Ku-band satellite payload active components, such as channel amplifiers, LNA and IF amplifiers.

Robust Speech Recognition using Noise Compensation Method Based on Eigen - Environment (Eigen - Environment 잡음 보상 방법을 이용한 강인한 음성인식)

  • Song Hwa Jeon;Kim Hyung Soon
    • MALSORI
    • /
    • no.52
    • /
    • pp.145-160
    • /
    • 2004
  • In this paper, a new noise compensation method based on the eigenvoice framework in feature space is proposed to reduce the mismatch between training and testing environments. The difference between clean and noisy environments is represented by the linear combination of K eigenvectors that represent the variation among environments. In the proposed method, the performance improvement of speech recognition systems is largely affected by how to construct the noisy models and the bias vector set. In this paper, two methods, the one based on MAP adaptation method and the other using stereo DB, are proposed to construct the noisy models. In experiments using Aurora 2 DB, we obtained 44.86% relative improvement with eigen-environment method in comparison with baseline system. Especially, in clean condition training mode, our proposed method yielded 66.74% relative improvement, which is better performance than several methods previously proposed in Aurora project.

  • PDF

2.4 GHz WLAN InGaP/GaAs Power Amplifier with Temperature Compensation Technique

  • Yoon, Sang-Woong;Kim, Chang-Woo
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.601-603
    • /
    • 2009
  • This letter presents a high performance 2.4 GHz two-stage power amplifier (PA) operating in the temperature range from $-30^{\circ}C$ to $+85^{\circ}C$ for IEEE 802.11g, wireless local area network application. It is implemented in InGaP/GaAs hetero-junction bipolar transistor technology and has a bias circuit employing a temperature compensation technique for error vector magnitude (EVM) performance. The technique uses a resistor made with a base layer of HBT. The design improves EVM performance in cold temperatures by increasing current. The implemented PA has a dynamic EVM of less than 4%, a gain of over 26 dB, and a current less than 130 mA below the output power of 19 dBm across the temperature range from $-30^{\circ}C$ to $+85^{\circ}C$.

A 70 MHz Temperature-Compensated On-Chip CMOS Relaxation Oscillator for Mobile Display Driver ICs

  • Chung, Kyunghoon;Hong, Seong-Kwan;Kwon, Oh-Kyong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.728-735
    • /
    • 2016
  • A 70 MHz temperature-compensated on-chip CMOS relaxation oscillator for mobile display driver ICs is proposed to reduce frequency variations. The proposed oscillator compensates for frequency variation with respect to temperature by adjusting the bias currents to control the change in delay of comparators with temperature. A bandgap reference (BGR) is used to stabilize the bias currents with respect to temperature and supply voltages. Additional temperature compensation for the generated frequency is achieved by optimizing the resistance in the BGR after measuring the output frequency. In addition, a trimming circuit is implemented to reduce frequency variation with respect to process. The proposed relaxation oscillator is fabricated using 45 nm CMOS technology and occupies an active area of $0.15mm^2$. The measured frequency variations with respect to temperature and supply voltages are as follows: (i) ${\pm}0.23%$ for changes in temperature from -30 to $75^{\circ}C$, (ii) ${\pm}0.14%$ for changes in $V_{DD1}$ from 2.2 to 2.8 V, and (iii) ${\pm}1.88%$ for changes in $V_{DD2}$ from 1.05 to 1.15 V.

Relative RPCs Bias-compensation for Satellite Stereo Images Processing (고해상도 입체 위성영상 처리를 위한 무기준점 기반 상호표정)

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.287-293
    • /
    • 2018
  • It is prerequisite to generate epipolar resampled images by reducing the y-parallax for accurate and efficient processing of satellite stereo images. Minimizing y-parallax requires the accurate sensor modeling that is carried out with ground control points. However, the approach is not feasible over inaccessible areas where control points cannot be easily acquired. For the case, a relative orientation can be utilized only with conjugate points, but its accuracy for satellite sensor should be studied because the sensor has different geometry compared to well-known frame type cameras. Therefore, we carried out the bias-compensation of RPCs (Rational Polynomial Coefficients) without any ground control points to study its precision and effects on the y-parallax in epipolar resampled images. The conjugate points were generated with stereo image matching with outlier removals. RPCs compensation was performed based on the affine and polynomial models. We analyzed the reprojection error of the compensated RPCs and the y-parallax in the resampled images. Experimental result showed one-pixel level of y-parallax for Kompsat-3 stereo data.

Effects of Drain Bias on Memory-Compensated Analog Predistortion Power Amplifier for WCDMA Repeater Applications

  • Lee, Yong-Sub;Lee, Mun-Woo;Kam, Sang-Ho;Jeong, Yoon-Ha
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.2
    • /
    • pp.78-84
    • /
    • 2009
  • This paper represents the effects of drain bias on the linearity and efficiency of an analog pre-distortion power amplifier(PA) for wideband code division multiple access(WCDMA) repeater applications. For verification, an analog predistorter(APD) with three-branch nonlinear paths for memory-effect compensation is implemented and a class-AB PA is fabricated using a 30-W Si LOMaS. From the measured results, at an average output power of 33 dBm(lO-dB back-off power), the PA with APD shows the adjacent channel leakage ratio(ACLR, ${\pm}$5 MHz offset) of below -45.1 dBc, with a drain efficiency of 24 % at the drain bias voltage($V_{DD}$) of 18 V. This compared an ACLR of -36.7 dEc and drain efficiency of 14.1 % at the $V_{DD}$ of 28 V for a PA without APD.

Bias Compensation of IKONOS Geo-level Satellite Imagery Using the Digital Map (수치지도를 이용한 IKONOS Geo-level 위성영상의 편의보정)

  • Lee Hyo Sung;Shin Sok Hyo;Ahn Ki Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.331-338
    • /
    • 2004
  • This paper describes capability of utilizing ground control points(GCPs) obtained from 1:1,000 and 1:5,000 digital vector maps to correct image coordinates which have errors due to bais rational polynomial coefficient(RPC) of IKONOS Geo-level stereo images. The accuracy of the bias-corrected images was improved to approximately 4m and 2m in planimetry and height, respectively. The accuracy was also compared with results from using GCPs obtained by GPS surveying. In consequence, bias-compensated IKONOS sereo imagery was evaluated to satisfy generating topographic map 1:10,000.

Modified RHKF Filter for Improved DR/GPS Navigation against Uncertain Model Dynamics

  • Cho, Seong-Yun;Lee, Hyung-Keun
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.379-387
    • /
    • 2012
  • In this paper, an error compensation technique for a dead reckoning (DR) system using a magnetic compass module is proposed. The magnetic compass-based azimuth may include a bias that varies with location due to the surrounding magnetic sources. In this paper, the DR system is integrated with a Global Positioning System (GPS) receiver using a finite impulse response (FIR) filter to reduce errors. This filter can estimate the varying bias more effectively than the conventional Kalman filter, which has an infinite impulse response structure. Moreover, the conventional receding horizon Kalman FIR (RHKF) filter is modified for application in nonlinear systems and to compensate the drawbacks of the RHKF filter. The modified RHKF filter is a novel RHKF filter scheme for nonlinear dynamics. The inverse covariance form of the linearized Kalman filter is combined with a receding horizon FIR strategy. This filter is then combined with an extended Kalman filter to enhance the convergence characteristics of the FIR filter. Also, the receding interval is extended to reduce the computational burden. The performance of the proposed DR/GPS integrated system using the modified RHKF filter is evaluated through simulation.

ERS-1 AND CCRS C-SAR Data Integration For Look Direction Bias Correction Using Wavelet Transform

  • Won, J.S.;Moon, Woo-Il M.;Singhroy, Vern;Lowman, Paul-D.Jr.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.49-62
    • /
    • 1994
  • Look direction bias in a single look SAR image can often be misinterpreted in the geological application of radar data. This paper investigates digital processing techniques for SAR image data integration and compensation of the SAR data look direction bias. The two important approaches for reducing look direction bias and integration of multiple SAR data sets are (1) principal component analysis (PCA), and (2) wavelet transform(WT) integration techniques. These two methods were investigated and tested with the ERS-1 (VV-polarization) and CCRS*s airborne (HH-polarization) C-SAR image data sets recorded over the Sudbury test site, Canada. The PCA technique has been very effective for integration of more than two layers of digital image data. When there only two sets of SAR data are available, the PCA thchnique requires at least one more set of auxiliary data for proper rendition of the fine surface features. The WT processing approach of SAR data integration utilizes the property which decomposes images into approximated image ( low frequencies) characterizing the spatially large and relatively distinct structures, and detailed image (high frequencies) in which the information on detailed fine structures are preserved. The test results with the ERS-1and CCRS*s C-SAR data indicate that the new WT approach is more efficient and robust in enhancibng the fine details of the multiple SAR images than the PCA approach.

Dual-Level LVDS Circuit with Common Mode Bias Compensation Technique for LCD Driver ICs (공통모드 전압 보정기능을 갖는 LCD 드라이버용 듀얼모드 LVDS 전송회로)

  • Kim Doo-Hwan;Kim Ki-Sun;Cho Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.3
    • /
    • pp.38-45
    • /
    • 2006
  • A dual-level low voltage differential signalling (DLVDS) circuit is proposed aiming at reducing transmission lines for a LCD driver IC. We apply two data to the proposed DLVDS circuit as inputs. Then, the transmitter converts two inputs to two kinds of fully differential signals. In this circuit, two transmission lines are sufficient to transfer two inputs while keeping the LVDS feature. However, the circuit has a common mode bias fluctuation due to difference of the input bias and the reference bias. We compensate the common mode bias fluctuation using a feedback circuit of the current source bias. The receiver recovers the original input data through a level decoding circuit. We fabricated the proposed circuit using $0.25{\mu}m$ CMOS technology. The simulation results of proposed circuit shows 1-Gbps/2-line data rate and 35mW power consumption at 2.5V supply voltage, respectively.

  • PDF