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Abstract

This paper represents the effects of drain bias on the linearity and efficiency of an analog pre-distortion power
amplifier(PA) for wideband code division multiple accessCcWCDMA) repeater applications. For verification, an analog
predistorter(APD) with three-branch nonlinear paths for memory-effect compensation is implemented and a class-AB
PA is fabricated using a 30-W Si LDMOS. From the measured results, at an average output power of 33 dBm(10-dB
back-off power), the PA with APD shows the adjacent channel leakage ratio(ACLR, +5 MHz offset) of below —45.1
dBe, with a drain efficiency of 24 % at the drain bias voltage(Vpp) of 18 V. This compared an ACLR of —36.7
dBc and drain efficiency of 14.1 % at the Vpp of 28 V for a PA without APD.
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[ . Introduction

Power amplifiers(PAs) should operate at a large back-
off power(BOP) in order to produce the proper linearity,
because modulated signals in modern communication sys-
tems have high peak-to-average power ratios(PAPRs).
Therefore, efficiency is degraded, primarily due to ther-
mal problems. To improve the efficiency at a large BOP,
a number of techniques have now been developed. These
can be classified into three types, as follow:

1. Switching-mode power amplifiers such as class-E,

F, -F !, etc!P,
I. Loz&c}i modulation, such as Doherty amplifiers,
et 1,

. Bias modulation, such as envelope tracking(ET),
envelope elimination and restoration(EER), etc!7MH,
The first type results in an extremely poor linearity,
in spite of its moderate efficiency enhancement. The se-
cond method can theoretically provide peak efficiency at
a large BOP by constructing two or more devices in
parallel and delivers acceptable linearity using Gma
cancellation. The last type improves the efficiency by
reducing the power consumption with the control of bias
voltages, according to the envelope of the instantaneous
signal. However, the linearity degradation resulting from
bias modulation also should be considered. Therefore,
powerful linearization techniques, such as analog(APD)
or digital predistorters(DPD), should be carefully em-
ployed to these three efficiency-boosting types for li-
nearity improvement, while preserving the enhanced effi-
ciency at a large BOPPI 17,

In this paper, we investigate the effects of drain bias
on the linearity and efficiency of the analog predistor-
tion PA for wideband code division multiple access
(WCDMA) repeater applications. For experimental valida-
tions, an APD with three-branch nonlinear paths for the
memory-effect compensation is implemented and the
class-AB PA is fabricated with a 30-W Si LDMOSFET.
The measured results prove that the analog predistortion
PA with drain bias modulation can improve the linearity
and efficiency over that seen with the PA without APD.

II. Drain Bias Effects on Memory-Compensated
Analog Predistortion Power Amplifier

2-1 Limited Performance of CAPD

For the conventional APD, it is very difficult to achi-
eve a significant cancellation of the distortion compo-
nents of the PA, since the PA shows asymmetry bet-
ween the lower and upper bands, due to memory effects
for wideband signals. Fig. 1(a) shows the block diagram
of the conventional APD(CAPD). Fig. 1(b) shows the
limited performance of the CAPD in linearizing the PA
with memory effects for a wideband modulated signal.
In the nonlinear path of the CAPD, a diode-based error
generator produces a symmetrical distortion signal. The
amplitudes and phases in the lower and upper bands are
concomitantly controlled by the vector modulator. How-
ever, since the PA shows asymmetry between the lower
and upper bands, due to memory effects for wideband
signals, it is very difficult for the CAPD to significantly
cancel the distortion components of the PA in the symme-
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trical states. Therefore, the CAPD with memory-effect com-
pensation should be applied to the PA with memory
effects.

2-2 Memory-Compensated MBAPD

To compensate for memory effects of the PA by adding
additional nonlinear paths to the conventional APD, we
have developed a multi-branch APD(MBAPD) with
various delay differences(A r), which further improves
the linearity. Fig. 2 shows the simple block diagram of
the MBAPD, which consists of a linear path and a
multi-branch nonlinear path. The linear path is com-
prised of the main delay line( ¢ ). The multi-branch
nonlinear path has a nonlinear function of Ex( -) and
various delay lines with different A 7 connected in para-
llel, which constitutes the memory-compensating part.
The 7 is delay-matched with the main delay in the
nonlinear path( 7 ).

The Ep +) transforms the wideband input signal of
VA{?) into a memoryless nonlinear signal of Ex[Vi(1)],
which passes through nonlinear paths with various de-
lays. The total predistorted signal of Vp(f) contains the
instantaneous, high-order, and past input signals. Finally,
the Vp(f) are used to compensate for memory effects of
the PA. The total output signals of the MBAPD of Vy(r)
can be expressed as

Vi) =V () +V, ()

=V (t-7.)+ ZVN(m)(f}

m=-n

=V, (t=1,)+ 2 Ey[V,(t—7y ~m-A7)]
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Fig. 1. (a) Block diagram and (b) limitation of the linearity
improvement of the CAPD.
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Fig. 3. Schematic of the proposed MBAPD with a three-
branch nonlinear path.

where V;(¢) and Va(¢) are the modulated signal after the
linear path and each predistorted signal after different
delay lines in the nonlinear path, respectively. Although
the Enx(-) in the nonlinear path produces the me-
moryless signal of Ex[Vi{#)], the MBAPD with various
A1 compensates for memory effects as well as for
memoryless nonlinearity of the PA since the Ey [V{(#)]
is transformed by various A7 and summed intc the
Ve(t) with memory characteristics. Therefore, the linea-
rity can be improved by controlling A r and a number
of additional nonlinear paths of n, according to the sig-
nal bandwidth of modulated signal and the memory-
effect quantity of the paltY,

2-3 Drain Bias Effects on an Analog Predistortion Power
Amplifier

Fig. 4 shows the block diagram of the PA with MBAPD.
The PA has a different output power, gain, and effi-
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Fig. 4. Block diagram of the PA with MBAPD.
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Fig. 5. Photograph of the fabricated MBAPD with three-
branch nonlinear path.

ciency when the drain bias voltage changes. Addi-
tionally, the nonlinear characteristics of the PA are va-
ried according to drain bias. Therefore, the MBAPD
should be optimized at each drain bias. However, it is
clear that the linearity improvement of the MBAPD de-
creases but the efficiency increases because the satura-
tion power is decreased by the reduced drain bias vol-
tage.

. Implementation and Experimental Results

The MBAPD with a three-branch nonlinear path was
designed as shown in Fig. 3. The two additional non-
linear paths are shorter and longer in delay than the 7y
and are used to compensate for the memory effects of
the PA. A gain amplifier(11-dB gain) and a 7 -type
fixed attenuator in the linear path(3-dB attenuation)
make the input and output power levels of the proposed
MBAPD identical. In this experiment, the ¢y and 7
arc 1.8 ns and 5.4 ns, respectively. The optimum A r
is 0.7 ns, which is experimentally determined based on
[13]. The vector modulator provides an attenuation over
40 dB and a phase shift over 280° using a variable
attenuator and two variable phase shifters, which are
fabricated with a 3-dB hybrid coupler, PIN diodes, and
varactor diodes. The 3-dB hybrid couplers(Anaren JX
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503) and three-way in-phase power splitters(Anaren 4J3305)
are used at the input and output of the three-branch
nonlinear path in the MBAPD. Fig. 5 depicts a photo-
graph of the fabricated MBAPD.

The class-AB PA has been fabricated using Freescale
MRF21030 LDMOSFET with a 30-W PEP at a drain
bias voltage(Vpp) of 28 V and a Vgs of 3.604 V(Ipg =
150 mA) at 2.14 GHz. To reduce memory effects, the
drain bias circuit incorporates a A/4 bias line with a
3-mm line width and several decoupling capacitors.

3-1 Memory-Compensated MBAPD

To investigate the memory-effect compensation of the
MBAPD for a one-carrier WCDMA signal, with a
PAPR of approximately 10 dB, we have explored at an
average output power(P,,) of 33 dBm, which is a
10.2-dB BOP from the P4 of 43.2 dBm. Fig. 6 shows
the measured predistorted signals for the CAPD and
MBAPD when the P, of the PA is 33 dBm. Com-
pared to the CAPD with symmetrical signals, the MBAPD
shows higher spurious emission in the lower band than
in the upper band, which is similar to the asymmetry of
the PA with memory effects, as shown in Fig. 7. From
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Fig. 6. Measured predistorted signals for the CAPD and
MBAPD at a P, of 33 dBm for a one-carrier
WCDMA signal.
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Fig. 7. Measured PSDs of the PA at a P,: of 33 dBm
for a one-carrier WCDMA signal. (i) Without APD,
(ii) With CAPD, and (iii) With MBAPD.
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Table 1. Summary of measured result at 33 dBm for a one-
carriecr WCDMA signal.

Contents Without With With
APD CAPD | MBAPD

ACLR | =3 MHz | =367 ~542 —63.1

[dBe] | 45 MHZ -39 —54.4 —63.1

the measured power spectral densities(PSDs) in Fig. 7,
the MBAPD compensates for memory effects of the PA
by fine adjustment of the three vector modulators and
then significantly improves an adjacent channel leakage
ratio(ACLR). Table 1 shows a summary of the mea-
sured results. The ACLRs are measured at the offset of
+5 MHz from 2.14 GHz.

3-2 Effects of Drain Bias

Fig. 8 shows the measured gain and drain efficiency
of the PA at various Vpp according to P,. for a con-
tinuous wave(CW). Also shown is the probability den-
sity function(PDF) of a one-carrier WCDMA signal. From
this figure, the PA with ¥pp modulation can be obser-
ved to deliver high efficiency when the PDF is heavily
gathered for a one-carrier WCDMA signal. Fig. 9 shows
the measured ACLR and drain efficiency of the PA
without APD at various Vpp as a function of P,,. The
ACLRs are measured at —5-MHz offset. From the mea-
sured results, the linearity of the PA is degraded as the
Vpp decreases, in spite of the efficiency enhancement.
For this reason, we have employed the previous MBAPD
to improve the linearity.

Fig. 10 shows the measured ACLR and drain effi-
ciency of the PA with MBAPD. At each P,., the vector
modulators in the APD are optimized to maximize the
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for a one-carriecr WCDMA signal.
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Fig. 10. Measured ACLR and drain efficiency of the PA

with MBAPD at various Vpp according to P, for
a one-carrier WCDMA signal.

ACLR. The dotted lines illustrate the minimum Vpp at
each P, and the corresponding drain efficiency when
the ACLR linearity specification of —45 dBc at
+5-MHz offset is satisfied. The measured results prove
that the linearity of the PA with MBAPD can be im-
proved while increasing the efficiency with the Vpp mo-
dulation.

Fig. 11 depicts the measured ACLR and drain effi-
ciency of the PA with MBAPD according to Vpp at a
P of 33 dBm for a one-carrier WCDMA signal. When
the PA with MBAPD satisfies the linearity specification
of —45 dB¢ with the maximum drain efficiency, the
optimum VDD is 18 V.

Fig. 12(a) shows the Measured ACLRs of the PA
without APD at a Vpp of 28 V and the PA with
MBAPD and Vpp modulation according to P, for a
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Measured performance of the PA without APD

at a Vpp of 28 V and the PA with MBAPD
and ¥pp modulation according to P, for a one-

carrier WCDMA signal.

Table 2. Summary of measured results at 33 dBm for a
one-carrier WCDMA signal.

Contents ;/\D/? [Gdeg]l effl?%?elrlllcy ?ng]{
(V0]

Without APD 18 13.1 24.2 —30.5

Without APD 28 15.3 14.1 —36.7

With MBAPD 18 13.2 24.0 —45.1

With MBAPD 28 153 14.1 —63.1

one-carrier WCDMA signal. For the PA with MBAPD
and Vpp modulation, the ACLR is improved by opti-
mally adjusting the MBAPD although the Vpp decrea-
ses, as compared to the PA without APD at Vpp of 28
V. Fig. 12(b) shows the measured drain efficiency and
gain for two conditions. For the PA with MBAPD and
Vpp modulation, the efficiency is improved with lower
Vpp while reducing the ACLR below —45 dBc. Table
2 shows a summary of the measured results, for various
conditions.

IV. Conclusion

We have investigated the effects of drain bias on the
linearity and efficiency of analog predistortion PA for
WCDMA repeater applications. For experimental valida-
tions, an MBAPD with three-branch nonlinear paths for
memory-effect compensation was implemented and the
class-AB PA was fabricated with a 30-W Si LDMO-
SFET. From the measured results at a P, of 33 dBm
(10-dB back-off power), the PA with MBAPD showed
an ACLR(=5 MHz offset) of below —45.1 dBc with a
drain efficiency of 24 % at the Vpp of 18V, compared
to the PA without APD with an ACLR of —36.7 dBc
and drain efficiency of 14.1 % at the Vpp of 28 V.
From the measured results, it is evident that the PA with
MBAPD can be a highly efficient and linear solution for
WCDMA repeater applications when the ET or other
high-efficiency bias modulation techniques are success-
fully applied.
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